Схемы

Схемы регулятора напряжения переменного тока на 220 вольт – Схема регулятора напряжения 220в своими руками – 4 схемы на Регулятор напряжения своими руками 0-220в — Производство и поставка электростанций, Бензиновые и дизельные генераторы от 1 до 100 кВт. Мини ТЭЦ на базе двигателя Стирлинга.

Содержание

Плавный регулятор переменного напряжения 0 220.  Регулятор напряжения на симисторе своими руками

Сегодня я вам расскажу об очень полезной схеме, которая пригодится как в лаборатории, так и в хозяйстве. Устройство, о котором пойдет речь, называется симисторный регулятор мощности. Регулятор можно применить для плавной регулировки яркостью освещения, температуры паяльника, оборотами электродвигателя (переменного тока). Мой вариант применения регулятора интересней, я плавно регулирую температуру нагрева тэна мощностью 1кВт в самогонном аппарате. Да-да, я занимаюсь этим благородным делом.

Схема имеет минимум элементов и заводится сразу. Мощность нагрузки для симисторного регулятора определяется током симистора. Симистор BTA12-600 рассчитан на ток 12 Ампер и напряжение 600 Вольт. Симистор нужно выбирать с запасом по току, я выбрал двукратный запас. Например, симистор BTA12-600 с оптимальным охлаждением может в штатном режиме пропускать через себя ток 8 Ампер. Если нужен регулятор мощнее, используйте симистор BTA16-600 или BTA24-600.

Рабочая температура кристалла симистора от -40 до +125 градусов Цельсия. Необходимо сделать хорошее охлаждение. У меня нагрузка 1кВт, соответственно ток нагрузки около 5А, радиатор площадью 200см кв. греется от 85 до90 градусов Цельсия при длительной работе (до 6ч). Планирую увеличить рабочую площадь радиатора, чтобы повысить надежность устройства.


Симистор имеет управляющий вывод и два вывода, через которые проходит ток нагрузки. Эти два вывода можно менять местами ничего страшного не случиться.

Для безопасности (чтобы не щелкнуло током), симистор необходимо устанавливать на радиатор через диэлектрическую прокладку (полимерную или слюдяную) и диэлектрическую втулку.


Компоненты.

Резистор 4.7кОм мощностью 0,25Вт. Динистор с маркировкой DB3 , полярности не имеет, впаивать любой стороной. Конденсатор пленочный на 100нФ 400В полярности не имеет.

Светодиод любого цвета диаметром 3мм, обратное напряжение 5В, ток 25мА. Короче любой светодиод 3мм. Светодиод дает индикацию нагрузки, не пугайтесь, если при первом включении (естественно без нагрузки) он светиться не будет.


Первое включение необходимо производить кратковременно без нагрузки. Если все нормально, никакие элементы не греются, ничего не щелкнуло, тогда включаем без нагрузки на 15 секунд. Далее цепляем лампу напряжением 220В и мощностью 60-200Вт, крутим ручку переменного резистора и наслаждаемся работой.


Для защиты я установил в разрыв сетевого провода (220В) предохранитель на 12А.


Пролог

Я уже описывал конструкцию Некоторые радиолюбители приспособили этот регулятор напряжения для управления яркостью осветительных ламп. При правильном подборе элементов, регулятор позволяет управлять мощностью ламп накаливания и даже оборотами асинхронных двигателей, но всё же не так хорошо, как бы этого хотелось.


В связи с ремонтом подобных регуляторов, я испытал одну из схем, которая оказалось более помехоустойчивой и простой в настройке, чем описанная ранее.

Но, расскажу обо всём по порядку.

Так вот, пришлось мне ремонтировать электропроводку вдали от родного дома. А именно, нужно было поменять выключатели с регуляторами мощности, или, как их там называют, диммеры (Dimmer).


В магазине новые выключатели с индикацией и регулировкой мощности стоили слишком дорого (45$ до налога). Так что, было решено временно заменить их более дешёвыми и менее функциональными выключателями, а неисправные диммеры отремонтировать. Ну, а так как на месте не было ни радиодеталей, ни необходимого инструмента, пришлось привести их домой. Вот в связи с этими мытарствами и родилась статья.


Приехав домой, я первым делом купил на местном радиорынке симисторы подходящей мощности BT139-800 всего по 0,65$ за штуку и вычертил электрическую схему диммера.


Ремонт симисторного регулятора – Dimmer-а

На чертеже изображена оригинальная электрическая схема промышленного диммера фирмы Leviton, предназначенного для работы в сети, напряжением 120 Вольт.

Проверка неисправных диммеров показала, что кроме самого симистора в них ничего не пострадало. Некоторые симисторы были пробиты, а некоторые оборваны. Один из диммером вышел из строя прямо у меня на глазах, когда внутри одной из ламп накаливания, вкрученной в люстру, произошло короткое замыкание.

И я бы не стал описывать процедуру замены симистора в этом регуляторе, если бы не «подводные камни», встретившиеся на этом пути.


Дело в том, что в ремонтируемых мною диммерах были установлены какие-то диковинные симисторы с надписью «68169». Мне не удалось найти на них даже даташита.

Кроме всего, у этих симисторов, размещённых в корпусе TO-220, контактная площадка оказалась изолированной от электродов симистора (триака). Хотя, как видите, контакт

Схемы регуляторов мощности (диммеров) на симисторах

Принцип работы симисторных регуляторов мощности (напряжения) в цепях
переменного тока.

Что такое симистор, принцип его работы, а также справочные характеристики некоторых популярных приборов мы с Вами внимательно рассмотрели на странице &nbspСсылка на страницу.
Там же мы отметили, что симистор пришёл на смену рабочей лошадке-тиристору и практически полностью вытеснил его из электроцепей переменного тока.

Вспомним пройденный материал.
Отличительной чертой симистора является то, что при подаче на его управляющий электрод тока (напряжения), прибор переходит в проводящее состояние, замыкая нагрузку, причём проводит ток, независимо от полярности, приложенного к нагрузке напряжения.
Полярность открывающего напряжения должна быть либо отрицательной для обеих полярностей напряжения на условном аноде, либо совпадать с полярностью «анодного» напряжения (т.е. быть плюсовой в момент прохождения положительной полуволны и минусовой — в момент прохождения отрицательной).

Итак. Важным плюсом симисторных схем в электроцепях переменного тока является отсутствие выпрямительных устройств, и двухполюсность напряжения в нагрузке, что даёт возможность подключать их, помимо всего прочего, как трансформаторам, так и электродвигателям переменного тока.

Познакомимся с расхожими схемами симисторных регуляторов.

Для начала давайте рассмотрим простейшую, но вполне себе работоспособную схему симисторного регулятора мощности с фазово-импульсным управлением, позволяющего работать с нагрузками вплоть до 1200 Вт.
Симисторный регулятор мощности

Симисторный регулятор мощности
Рис.1

При замене симистора на другой, с большей величиной допустимого тока, мощность нагрузки можно увеличивать практически неограниченно.

А теперь — как это всё работает?
В начале действия положительного полупериода симистор закрыт. По мере увеличения сетевого напряжения конденсатор С1 заряжается через последовательно соединённые резисторы R1 и R2. Причём увеличение напряжения на конденсаторе С1 отстаёт (сдвигается по фазе) от сетевого на величину, зависящую от суммарного сопротивления резисторов и номинала ёмкости С1. Чем выше значения резисторов и конденсатора — тем больше сдвиг по фазе.

Заряд конденсатора продолжается до тех пор, пока напряжение на нём не достигнет порога пробоя динистора (около 35 В). Как только динистор откроется (следовательно, откроется и симистор), через нагрузку потечёт ток, определяемый суммарным сопротивлением открытого симистора и нагрузки.
При этом симистор остаётся открытым до конца полупериода, т.е. момента, когда полуволна сетевого напряжения приблизится к нулевому уровню.
Переменным резистором R2 устанавливают момент открывания динистора и симистора, производя тем самым регулировку мощности, подводимой к нагрузке.

При действии отрицательной полуволны принцип работы устройства аналогичен.

Диаграммы напряжения на нагрузке при различных значениях переменного резистора приведены на Рис.1 справа.

Для предотвращения ложных срабатываний триаков, вызванных переходными процессами в индуктивных нагрузках (например, в электродвигателях и обмотках трансформаторов), симисторы должны иметь дополнительные компоненты защиты. Это, как правило, демпферная RC-цепочка (снабберная цепь) между силовыми электродами триака, которая используется для ограничения скорости изменения напряжения (на схеме Рис.1 показана синим цветом).
В некоторых случаях, когда нагрузка имеет ярко выраженный ёмкостной характер, между силовыми электродами необходима индуктивность для ограничения скорости изменения тока при коммутации.

Существуют и различные модификации приведённой выше простейшей схемы диммера.
Симисторный регулятор мощностиСимисторный регулятор мощности
Рис.2

Дополнительная цепочка R3 C2 (Рис.2 слева) призвана увеличить максимально достижимый фазовый сдвиг между сетевым напряжением и напряжением, поступающим на левый вывод динистора, что в свою очередь позволяет производить более глубокую регулировку мощности, подводимой к нагрузке.

На схеме, приведённой на Рис.2 справа, цепь, образованная диодами D1, D2 и резистором R1, обеспечивает плавность регулировки при минимальной выходной мощности. Без неё характеристика управления регулятором имеет гистерезис, что проявляется в скачкообразном повышении регулируемой мощности от нуля до 3…5% от максимальной.

Диодно-резисторная цепочка разряжает конденсатор при переходе сетевого напряжения от отрицательной к положительной полуволне и, тем самым, устраняет эффект скачкообразного начального увеличения мощности в нагрузке.

Изредка можно встретить устройства, в которых регулировка мощности производится посредством отдельной схемы, которая формирует импульсы с регулируемой длительностью для управления симистором.
Такие диммеры обладают значительно лучшими характеристиками, чем представленные выше, однако обратной стороной медали является повышенная сложность устройств и необходимость наличия отдельного источника питания схемы. Исключения составляют устройства, выполненные на специализированных ИМС. Примером такой микросхемы является фазовый регулятор КР1182ПМ1.
Симисторный регулятор мощности
Рис.3

Применение КР1182ПМ1 в регуляторах мощности (Рис.3) позволяет добиваться как хорошей повторяемости, так и широкого диапазона перестройки и высокой температурной стабильности.

А если уж мы решили заморачиваться созданием отдельной схемы формирования управляющих импульсов, то имеет смысл отказаться от фазово-импульсного метода управления, и обратиться в сторону регуляторов мощности, работающих по принципу пропускания через нагрузку определённого целого числа периодов сетевого напряжения в единицу времени.
При таком способе регулирования появляется возможность включения симистора вблизи точки пересечения сетевым переменным напряжением нулевого потенциала, вследствие чего радикально снижается уровень помех, вносимых в электросеть.
Освещение таким диммером не запитаешь ввиду заметного мерцания, а вот для беспомехового регулирования мощности электронагревательных приборов — самое то.

Симисторный регулятор мощности

Рис.4

Данная схема (Рис.4) перекочевала со страницы https://www.radiokot.ru/circuit/power/converter/50/ и представляет собой модификацию регулятора мощности, описанного в журнале Радио, 2009, № 9, с. 40–41 «В.Молчанов Симисторный регулятор мощности». Вот, что пишет автор.

«Устройство предназначено для беспомехового регулирования мощности электронагревательных приборов, работающих от сети переменного тока 220 В.
Кроме снижения уровня коммутационных помех, в регуляторе реализован принцип пропускания в нагрузку целого числа периодов сетевого напряжения. При таком способе регулирования с высокой точностью обеспечивается отсутствие постоянной составляющей напряжения на нагрузке, вследствие чего дополнительно снижается уровень искажений, вносимых в электросеть. Это особенно важно в случае мощной нагрузки.
Максимальная мощность нагрузки, подключаемой к регулятору, составляет 1 кВт. Потребляемый регулятором ток от сети не превышает 4 мА (действующее значение), типовое потребление – 3,5 мА.

На микросхеме DD1 и элементах R1, C1, VD1, VD2 выполнен синхронизированный с сетью генератор прямоугольных импульсов. Период импульсов, вырабатываемых генератором, составляет около 1,3 с. Резистор R1 регулирует скважность импульсов. Элементы DD1.1, DD1.2 и DD1.3, DD1.4 включены как два RS‑триггера, на входы которых (выводы 1 и 9 микросхемы) через делитель R7R6 поступает часть сетевого напряжения. Транзисторы VT1 и VT2 выполняют функцию мощного инвертора логических сигналов для управления симистором. Питание устройства осуществляется через параметрический стабилизатор, в котором задействованы балластный резистор R7, стабилитрон VD3 и сглаживающий конденсатор C3. Когда напряжение на верхнем по схеме сетевом выводе относительно нижнего отрицательное, стабилитрон VD3 пропускает ток в прямом направлении, когда положительное – ограничивает напряжение на выводах 1 и 9 микросхемы DD1 на уровне 10 В. Ток, проходящий через эти выводы и внутренние защитные диоды микросхемы, заряжает конденсатор C3 до напряжения около 9,2 В, которое служит для питания низковольтной части устройства. Использование защитных диодов микросхемы не приводит к её защёлкиванию, поскольку амплитудное значение тока через резистор R7 ограничено и составляет около 5 мА.

Во время проверки регулятора мощности удобно в качестве нагрузки подключить лампу накаливания (желательно на 100 Вт или более). Устройство обычно не нуждается в налаживании, но если оказалось, что симистор VS1 открывается ненадёжно (лампа в нагрузке не включается или мерцает), можно попробовать уменьшить сопротивление резистора R4 или подобрать экземпляр симистора с меньшим током открывания. Резистор R4 позволяет выставить мгновенное напряжение сети, при котором происходит открывание симистора. Это напряжение может быть рассчитано по формуле Uпор ≈ Uпит∙R7/(2∙R4), где Uпит ≈ 9,2 В – напряжение на конденсаторе C3, сопротивления резисторов R6 и R7 должны быть равны. Уменьшение сопротивления резистора R4 обеспечивает более надёжное открывание симистора, но увеличивает уровень создаваемых помех, поэтому делать его сопротивление менее 30 кОм нежелательно».

И конечно, было бы совсем неправильно не упомянуть о таком важном представителе симисторного семейства, как — оптосимистор.
Оптосимистор включается посредством освещения полупроводникового слоя и представляет собой комбинацию оптоизлучателя и симистора в одном корпусе. Преимущество — простая однополярная схема управления и гальваническая изоляция цепей управления от фаз сетевого напряжения.

Оптосимисторы могут коммутировать нагрузку как сами (Рис.5),

Симисторный регулятор мощности
Рис.5

так и управлять более мощными симисторами (Рис.6).

Симисторный регулятор мощности
Рис.6

За счёт полной гальванической развязки управляющих цепей оптосимистора, основное его предназначение — это управление мощностью нагрузки при помощи логических устройств или микроконтроллеров с собственными цепями питания.
Симисторный регулятор мощности
Рис.7

В качестве примера на Рис.7 приведена схема регулятора мощности паяльника.
Вот, как работу этой схемы описывает уважаемый Falconist на странице сайта http://forum.cxem.net .

«Оптосимистор серии МОС204х/306х/308х содержит внутри себя схему пересечения питающим напряжением нуля, т.е. открывается только в точке нулевого значения синусоидального сетевого напряжения, независимо от момента поступления управляющего напряжения на его светодиод. Тем самым обеспечивается ключевой режим подключения нагрузки, с практически полным отсутствием ВЧ помех, проникающих в сеть 220 В. Поэтому его замена на оптосимисторы МОС302х/305х, не имеющих такой схемы, крайне нежелательна, т.к. порочит сам принцип беспомехового регулирования.
Конденсатор С1 является балластным реактивным сопротивлением. Ток, который он пропускает совместно с подключенным параллельно ему резистором R1,приближенно составляет 16 мА. Данный ток используется для питания таймера DA1 и инфракрасного светодиода оптрона DA2».

Работа таймера, формирующего управляющий сигнал для оптотиристора, аналогична работе DD1 на Рис.4 и сводится к формированию импульсов с изменяемой скважностью.

 

Схема тиристорного регулятора мощности без помех

Для того, чтобы получить качественную и красивую пайку требуется правильно подобрать мощность паяльника и обеспечить определенную температуру его жала в зависимости от марки применяемого припоя. Предлагаю несколько схем самодельных тиристорных регуляторов температуры нагрева паяльника, которые с успехом заменят многие промышленные несравнимые по цене и сложности.

Внимание, нижеприведенные тиристорные схемы регуляторов температуры гальванически не развязаны с эклектической сетью и прикосновение к токоведущим элементам схемы может привести к поражению электрическим током!

Для регулировки температуры жала паяльника применяют паяльные станции, в которых в ручном или автоматическом режиме поддерживается оптимальная температура жала паяльника. Доступность паяльной станции для домашнего мастера ограничена высокой ценой. Для себя я вопрос по регулированию температуры решил, разработав и изготовив регулятор с ручной плавной регулировкой температуры. Схему можно доработать для автоматического поддержания температуры, но я не вижу в этом смысла, да и практика показала, вполне достаточно ручной регулировки, так как напряжение в сети стабильно и температура в помещении тоже.

Классическая тиристорная схема регулятора

Классическая тиристорная схема регулятора мощности паяльника не соответствовала одному из главных моих требований, отсутствию излучающих помех в питающую сеть и эфир. А для радиолюбителя такие помехи делают невозможным полноценно заниматься любимым делом. Если схему дополнить фильтром, то конструкция получится громоздкой. Но для многих случаев использования такая схема тиристорного регулятора может с успехом применяться, например, для регулировки яркости свечения ламп накаливания и нагревательных приборов мощностью 20-60вт. Поэтому я и решил представить эту схему.

Схема классического тиристорного регулятора температуры паяльника

Для того, что понять как работает схема, остановлюсь подробнее на принципе работы тиристора. Тиристор, это полупроводниковый прибор, который либо открыт, либо закрыт. чтобы его открыть, нужно на управляющий электрод подать положительное напряжение 2-5 В в зависимости от типа тиристора, относительно катода (на схеме обозначен k). После того, как тиристор открылся (сопротивление между анодом и катодом станет равно 0), закрыть его через управляющий электрод не возможно. Тиристор будет открыт до тех пор, пока напряжение между его анодом и катодом (на схеме обозначены a и k) не станет близким к нулевому значению. Вот так все просто.

Работает схема классического регулятора следующим образом. Сетевое напряжение переменного тока подается через нагрузку (лампочку накаливания или обмотку паяльника), на мостовую схему выпрямителя, выполненную на диодах VD1-VD4. Диодный мост преобразует переменное напряжение в постоянное, изменяющееся по синусоидальному закону (диаграмма 1). При нахождении среднего вывода резистора R1 в крайнем левом положении, его сопротивление равно 0 и когда напряжение в сети начинает увеличиваться, конденсатор С1 начинает заряжаться. Когда С1 зарядится до напряжения 2-5 В, через R2 ток пойдет на управляющий электрод VS1. Тиристор откроется, закоротит диодный мост и через нагрузку пойдет максимальный ток (верхняя диаграмма).

При повороте ручки переменного резистора R1, его сопротивление увеличится, ток заряда конденсатора С1 уменьшится и надо будет больше времени, чтобы напряжение на нем достигло 2-5 В, по этому тиристор уже откроется не сразу, а спустя некоторое время. Чем больше будет величина R1, тем больше будет время заряда С1, тиристор будет открываться позднее и получаемая мощность нагрузкой будет пропорционально меньше. Таким образом, вращением ручки переменного резистора, осуществляется управление температурой нагрева паяльника или яркостью свечения лампочки накаливания.

Схема классического тиристорного регулятора на тиристоре КУ202Н

Выше приведена классическая схема тиристорного регулятора выполненная на тиристоре КУ202Н. Так как для управления этим тиристором нужен больший ток (по паспорту 100 мА, реальный около 20 мА), то уменьшены номиналы резисторов R1 и R2, а R3 исключен, а величина электролитического конденсатора увеличена. При повторении схемы может возникнуть необходимость увеличения номинала конденсатора С1 до 20 мкФ.

Простейшая тиристорная схема регулятора

Вот еще одна самая простая схема тиристорного регулятора мощности, упрощенный вариант классического регулятора. Количество деталей сведено к минимуму. Вместо четырех диодов VD1-VD4 используется один VD1. Принцип работы ее такой же, как и классической схемы. Отличаются схемы только тем, что регулировка в данной схеме регулятора температуры происходит только по положительному периоду сети, а отрицательный период проходи через VD1 без изменений, поэтому мощность можно регулировать только в диапазоне от 50 до 100%. Для регулировки температуры нагрева жала паяльника большего и не требуется. Если диод VD1 исключить, то диапазон регулировки мощности станет от 0 до 50%.

Схема простейшего тиристорного регулятора температуры паяльника

Если в разрыв цепи от R1 и R2 добавить динистор, например КН102А, то электролитический конденсатор С1 можно будет заменить на обыкновенный емкостью 0,1 mF. Тиристоры для выше приведенных схем подойдут, КУ103В, КУ201К (Л), КУ202К (Л, М, Н), рассчитанные на прямое напряжение более 300 В. Диоды тоже практически любые, рассчитанные на обратное напряжение не менее 300 В.

Приведенные выше схемы тиристорных регуляторов мощности с успехом можно применять для регулирования яркости свечения светильников, в которых установлены лампочки накаливания. Регулировать яркость свечения светильников, в которых установлены энергосберегающие или

Симисторный регулятор мощности | Мастер Винтик. Всё своими руками!

Простой регулятор мощности для паяльника (лампы) на MAC97A

Простой регулятор мощности до 100Вт можно сделать всего из нескольких деталей. Его можно приспособить для регулирования температуры жала паяльника, яркости настольной лампы, скорости вентилятора и т.п. Регулятор на тиристоре получается по размерам сильно большой и конструктивно имеет недочеты и большую схему. Регулятор мощности на импортном малогабаритном симисторе mac97a (600В; 0,6А) можно коммутировать и более мощные нагрузки, простая схема, плавная регулировка, маленькие габариты.

Немного о принципе работы симистора

Если у тиристора есть анод и катод, то электроды у симистора так охарактеризовать нельзя, потому что каждый электрод является и анодом и катодом одновременно. В отличие от тиристора, который проводит ток только в одном направлении, симистор способен проводить ток в двух направлениях. Именно поэтому симистор прекрасно работает в сетях переменного тока.

Как раз простой схемой, характеризующей принцип работы симистора служит наш электронный регулятор мощности.

 

После подключения устройства к сети на один из электродов симистора подаётся переменное напряжение. На электрод, который является управляющим с диодного моста подаётся отрицательное управляющее напряжение. При превышении порога включения симистор откроется и ток пойдёт в нагрузку. В тот момент, когда напряжение на входе симистора поменяет полярность он закроется. Потом процесс повторяется.

Чем больше уровень управляющего напряжения тем быстрее включится симистор и длительность импульса на нагрузке будет больше. При уменьшении управляющего напряжения длительность импульсов на нагрузке будет меньше. После симистора напряжение имеет пилообразную форму с регулируемой длительностью импульса.

В данном случае изменяя управляющее напряжение мы можем регулировать яркость электрической лампочки или температуру жала паяльника, а также скорость вентилятора.

Принципиальная схема регулятора на симисторе MAC97A6

Описание работы регулятора мощности на симисторе

При каждой полуволне сетевого напряжения конденсатор С заряжается через цепочку сопротивлений R1, R2, когда напряжение на С становится равным напряжению открывания динистора VD1 происходит пробой и разрядка конденсатора через управляющий электрод VS1 .

Динистор DB3 является двунаправленным диодом (триггер-диод), который специально создан для управления симистором или тиристором. В основном своем состоянии динистор DB3 не проводит через себя ток (не считая незначительный ток утечки) до тех пор, пока к нему не будет приложено напряжение пробоя.

В этот момент динистор переходит в режим лавинного пробоя и у него проявляется свойство отрицательного сопротивления. В результате этого на динисторе DB3 происходит падение напряжения в районе 5 вольт, и он начинает пропускать через себя ток, достаточный для открытия симистора или тиристора.

Диаграмма вольт-амперной характеристики (ВАХ) динистора DB3 изображена на рисунке:

Поскольку данный вид полупроводника является симметричным динистором (оба его вывода являются анодами), то нет разницы, как его подключать.

Характеристики динистора DB3

Кому нужно регулировать нагрузку более 100Вт, ниже представлена похожая схема более мощного регулятора на симисторе ВТ136-600.

Принципиальная схема регулятора на симисторе BT136-600

Приведенная схема регулятора мощности на симисторе рассчитана на достаточно большой ток нагрузки.

Если у Вас нет необходимых деталей и платы для сборки регулятора мощности на симисторе MAC97A6, Вы можете купить полный набор для его сборки в нашем магазине.



ПОДЕЛИТЕСЬ С ДРУЗЬЯМИ



П О П У Л Я Р Н О Е:

  • Как быстро и просто самому отремонтировать радиоаппаратуру?
  • Ремонт аппаратуры своими руками

    Рано или поздно перестаёт работать телевизор, приёмник, модем и т.д. Большая часть процента выхода из строя радиоаппаратуры происходит из за высыхания электролитических конденсаторов.

    Из за этого прибор начинает долго включаться или не включаться совсем, происходят изменения в работе, зависания и сбои.

    Устранить такую неисправность легко и быстро может даже начинающий радиолюбитель.

    Подробнее…

  • Прибор для магнитотерапии своими руками
  • Схема простого прибора для локальной магнитотерапии

    Многие медицинские приборы можно сделать своими руками. Вот и этот прибор для магнитотерапии имеет простую схему.

    Его можно применить если Вас или Ваших близких мучают боли в суставах от отложения солей (полиартрит, артриты, артрозы), также это устройство можно применять при лечении переломов и заживлении ран и при зубных болях.

    Подробнее…

  • Простой усилитель НЧ на LM386
  • В этой статье представлена схема простого усилителя НЧ на не дорогой микросхеме LM386. Его может сделать даже начинающий радиолюбитель.

    Усилитель можно использовать для усиления сигналов звуковой частоты с компьютера, плеера, карманного радиоприемника, для дверного звонка или наушников… Есть множество применений для этого маломощного усилителя.

    Подробнее…


Популярность: 88 440 просм.

Регулятор мощности паяльника | Для дома, для семьи

Здравствуйте уважаемые читатели сайта sesaga.ru. В этой статье я расскажу Вам, как собрать простой регулятор мощности для паяльника, позволяющий плавно изменять напряжение на нагревательном элементе, тем самым поддерживая оптимальную температуру жала паяльника.

Регулятор мощности для паяльника

Если жало недостаточно прогретое, то припой плавится медленно, и паяльник приходится дольше держать прижатым к выводам деталей, что может привести их к выходу из строя.

Пайка перегретым жалом так же получается непрочной. Припой не держится на таком жале, а просто скатывается с него.

Отсюда вывод: чтобы пайка не была мучением, а рабочая часть паяльника была всегда хорошо прогрета, для него нужно поддерживать оптимальную температуру.

Внимание! Эта конструкция имеет бестрансформаторное питание от сети переменного тока. Собирая ее, обращайте особое внимание на соблюдение техники безопасности при работе с электроустановками.

Принципиальная схема регулятора мощности.

Эту схему я собрал так давно, что даже и не помню когда. Она была опубликована в журнале «Радио» № 2-3 за 1992 г. автора И. Нечаева, и за все время эксплуатации регулятора не было ни одного отказа.

Схема регулятора мощности паяльника

Как Вы видите, схема очень простая, и состоит всего из двух частей: силовой и схемы управления.

К силовой части относится тиристор VS1, с анода которого снимается регулируемое напряжение, через которое паяльник включается в сеть 220В.

Схема управления, собранная на транзисторах VT1 и VT2, управляет работой тиристора. Питается она через параметрический стабилизатор, образованный резистором R5 и стабилитроном VD1. Стабилитрон VD1 служит для стабилизации и ограничения возможного повышения напряжения, питающего схему управления. Резистор R5 гасит лишнее напряжение, а переменным резистором R2 регулируется выходное напряжение регулятора мощности.

Вот такой небольшой набор нам понадобится, для сборки регулятора мощности для паяльника.

Набор элементов для регулятора мощности

Конструкция и детали.

В схеме используются два кремниевых транзистора: КТ315 и КТ361. Так как корпуса у них одинаковые, то различаются они по месту расположения буквенной маркировки. На рисунке эти места обозначены стрелками.

Цоколевка и внешний вид транзисторов

У транзистора КТ315 буква всегда расположена в левом верхнем углу корпуса, а у КТ361 буква всегда наносится в середине корпуса. Все остальные обозначения это: год выпуска, месяц, партия.

На следующем рисунке изображены диод и стабилитрон. Здесь нужно обратить внимание на цоколевку их выводов. Как правило, цоколевка наносится на корпусе элемента в виде полоски, точки или нескольких точек со стороны обозначаемого вывода.

Также встречаются диоды, у которых на корпусе нанесено условное обозначение диода, применяемое на принципиальных схемах. Как именно нанесено обозначение относительно выводов, значит, такое расположение анода и катода соответствует действительности.

У импортных диодов и стабилитронов наносится полоска со стороны вывода катода, а у мощных, цоколевка наносится в виде условного обозначения диода.

Внешний вид диода и стабилитрона

У Советских и Российских диодов цоколевка немного отличается от импортной. Здесь используется и полоска, и точки, и условное обозначение диода. К тому же еще обозначаются и вывод анода, и вывод катода. Так что, в любом случае, желательно использовать справочник или измерительный прибор для более точного определения выводов.

В схеме регулятора мощности, в качестве регулируемого элемента, используется тиристор. Сам по себе тиристор напоминает диод, только у него есть еще один вывод – управляющий электрод.

Цоколевка и внешний вид тиристора

В закрытом состоянии тиристор не пропускает ток, и если на его управляющий электрод подать отпирающее напряжение, то тиристор откроется, и через анод и катод потечет ток. Чем больше будет ток отпирающего напряжения, тем больший ток будет пропускать тиристор через себя.

Если возникнут проблемы с приобретением резистора R5, то его можно будет сделать из двух резисторов, соединенных последовательно. Все остальные детали простые, поэтому на них останавливаться не будем.

В качестве корпуса регулятора мощности, как вы уже догадались, возьмем накладную розетку. Когда будете покупать, то обратите внимание, чтобы сама розетка была сделана из пластмассы, а не из керамики.

Пластмассовая часть розетки

Это нужно для того, если вдруг тиристор не будет влезать в корпус, то от пластмассы всегда можно срезать лишний кусок.

Собирать регулятор будем из двух частей. Низковольтную часть лучше собрать на фольгированном стеклотекстолите, плотном картоне или любом другом диэлектрическом материале — так будет аккуратней. А вот высоковольтную часть сделаем навесным монтажом, как показано на рисунке ниже.

Монтажная схема регулятора мощности

Здесь отверстия обозначены черными точками, а все соединения между точками и деталями — дорожки, показаны синими линиями.
Плата схемы управления и силовая часть соединяются между собой тремя красными проводниками.

Плата схемы управления регулятора мощности.

Если у Вас нет опыта, то монтаж лучше сделать на плотном картоне. Заодно поймете, как элементы собираются в схему, да и для такой схемки тратить текстолит и хлорное железо расточительно. Тем более, практически все радиолюбители начинали именно с картона или фанеры. Я сам свой первый транзисторный приемник собрал на картоне.

Здесь все очень просто. В картоне прокалываете отверстия, и в них вставляете радиодетали. С обратной стороны картона загните выводы, и спаяйте их между собой, собирая схему.
Кусок картона возьмите с запасом. Лишнее потом отрежете.

Вот такая плата схемы управления у меня получилась.

Плата схемы управления регулятора мощности

P.S. Я немного разучился собирать схемы на картоне, получилось не совсем красиво, но это лучше, чем навесной монтаж.

Силовая часть регулятора мощности.

К аноду и катоду тиристора припаиваем диод VD2. Резистор R6 припаивается к управляющему электроду и катоду тиристора. Резистор R5 одним выводом подпаивается к аноду тиристора, а вторым к катоду стабилитрона VD1. С управляющего электрода тиристора проводник уйдет на эмиттер транзистора VT1.

Монтажная схема силовой части регулятора

Теперь силовую часть и плату управления собираем в единую схему. Должно получиться вот так.

Монтажная схема регулятора в сборе

Все, что мы с Вами собрали, осталось подключить к розетке будущего регулятора мощности.

Здесь будьте предельно внимательны. Одна ошибка, и можно потерять тиристор, диод, или вообще сделать короткое замыкание.

На всякий случай сделал рисунок, где указал, куда следует припаивать и подключать провода от схемы регулятора и шнура 220В к розетке, в которую будет вставляться паяльник.

Подключаем схему к розетке регулятора мощности

Перед установкой всех компонентов в корпус необходимо проверить работу регулятора мощности. Для этого вставляем паяльник в розетку регулятора, измерительный прибор переводим в режим измерения переменного напряжения на самый высокий предел. В мультиметре это 750В.

Включаем вилку регулятора в сетевую розетку 220В и вращаем переменный резистор. Если Вы все сделали правильно, то на приборе напряжение должно плавно изменяться.

Бывает так, что при вращении резистора в сторону, например, увеличения, напряжение уменьшается. Или наоборот. Здесь, просто надо поменять местами крайние выводы переменного резистора.

Из личного опыта. Рекомендую установить на выходе регулятора значение напряжения 150 Вольт и запомнить или отметить положение движка переменного резистора при этом значении. Чтобы уже потом при пайке производить регулирование температуры жала паяльника от этого значения в большую или меньшую сторону.

Теперь осталось все вот это поместить в корпус.

Вначале крепите переменный резистор, следом укладываете тиристор, потом крепите под винт розетку, ну и плату вставляете туда, куда она влезет. У меня получилось вот так.

Регулятор мощности в сборе

От розетки, которую Вы купили, должна остаться крышка, закрывающая дно. Вот ей, я и предлагаю закрыть нижнюю часть регулятора.
Для этого в крепежные отверстия розетки нужно паяльником вплавить гайки диаметром 3мм, а крышку прикрепить винтами с плоской шляпкой. Должно получиться приблизительно вот так.

Крепление задней крышки регулятора мощности

Вот и все. Собранная правильно из исправных деталей схема регулятора мощности для паяльника начинает работать сразу, и в налаживании не нуждается.

P.S. Эту идею подсказал читатель T@NK. В свою конструкцию регулятора он установил стрелочный вольтметр — что очень удобно. Но таких маленьких головок, чтобы можно было ее установить в розетку, промышленность не выпускает, поэтому предлагаю установить светодиод, что тоже будет удобно. На принципиальной схеме вновь добавляемые элементы выделены красным цветом.

Доработка схемы регулятора мощности для паяльника

По яркости свечения светодиода Вы будете приблизительно видеть, какое напряжение поступает на паяльник в данный момент. Светодиод можно установить прямо над ручкой переменного резистора.

Резистор подбирайте исходя из яркости свечения светодиода. Начните от номинала 100 килоом. Припаиваете резистор и светодиод, устанавливаете движок переменного резистора на максимум, и включаете регулятор мощности в розетку. Паяльник должен быть подключен.

Если светодиод не «горит», уменьшаете номинал резистора, например, до 91 килоома и пробуете. Предварительно проверьте измерительным прибором, какая яркость у светодиода — такой яркости и добивайтесь. Ярче делать не надо – сгорит.

Если светодиод опять не «горит» или «горит» слабо, значит, снова уменьшаете номинал резистора. Таким образом, подгоняете резистор под яркость свечения светодиода. Когда яркость свечения будет приемлемая, покрутите движок переменного резистора: в одну сторону яркость свечения будет уменьшаться, а в другую увеличиваться.

Внимание! Не забываем все манипуляции с регулятором делать только тогда, когда он выключен из розетки. Конструкция имеет бестрансформаторное питание.

Также рекомендую посмотреть ролик, в котором автор нескольких статей этого сайта picdiod усовершенствовал регулятор и демонстрирует его работу. А для тех, кто захочет повторить его конструкцию, picdiod предоставляет чертежи печатных плат в формате lay, которые можно скачать по этой ссылке.

А если Вы предполагаете использовать этот регулятор для включения и отключения освещения, то почитайте статью об автомате плавного включения и отключения освещения, который за счет плавной подачи напряжения на лампу накаливания продлевает ей срок жизни.

Удачи!

ТИРИСТОРНЫЙ РЕГУЛЯТОР НАПРЯЖЕНИЯ

   Данный регулятор напряжения собирался мной для использования в различных направлениях: регулирование скорости вращения двигателя, изменение температуры нагрева паяльника и т.д. Возможно название статьи покажется не совсем корректным, и эта схема иногда встречается как регулятор мощности, но тут надо понимать, что по сути происходит регулировка фазы. То есть времени, в течении которого сетевая полуволна проходит в нагрузку. И с одной стороны регулируется напряжение (через скважность импульса), а с другой — мощность, выделяемая на нагрузке.

Конструкция регулятора напряжения на мощном тиристоре

   Следует учесть, что наиболее эффективно данный прибор будет справляться с резистивной нагрузкой – лампы, нагреватели и т.д. Потребители тока индуктивного характера тоже можно подключать, но при слишком малой его величине надёжность регулировки снизится.

Схема регулятора напряжения на мощном тиристоре

   Схема данного самодельного тиристорного регулятора не содержит дефицитных деталей. При использовании, указанных на схеме выпрямительных диодов, прибор может выдержать нагрузку до 5А (примерно 1 кВт) с учетом наличия радиаторов. 

Плата с деталями регулятора напряжения на тиристоре

   Для увеличения мощности подключаемого устройства нужно использовать другие диоды или диодные сборки, рассчитанные на необходимый вам ток.

ТИРИСТОРНЫЙ РЕГУЛЯТОР НАПРЯЖЕНИЯ НА КУ202

   Так-же нужно заменять и тиристор, ведь КУ202 рассчитан на предельный ток до 10А. Из более мощных рекомендуются отечественные тиристоры серии Т122, Т132, Т142 и другие аналогичные.

ТИРИСТОРНЫЙ РЕГУЛЯТОР НАПРЯЖЕНИЯ СВОИМИ РУКАМИ

   Деталей в тиристорном регуляторе не так уж и много, в принципе допустим навесной монтаж, однако на печатной плате конструкция будет смотреться красивее и удобнее. Рисунок платы в формате LAY качаем тут. Стабилитрон Д814Г меняется на любой, с напряжением 12-15В.

ТИРИСТОРНЫЙ РЕГУЛЯТОР НАПРЯЖЕНИЯ В СБОРЕ

   В качестве корпуса использовал первый попавшийся — подходящий по размерам. Для подключения нагрузки вывел наружу разъем для вилки. Регулятор работает надежно и действительно изменяет напряжение от 0 до 220 В. Автор конструкции: SssaHeKkk.

   Форум по радиосхемам

   Обсудить статью ТИРИСТОРНЫЙ РЕГУЛЯТОР НАПРЯЖЕНИЯ


Регулятор оборотов электродвигателя 220В | 2 Схемы

Качественный и надёжный контроллер скорости вращения для однофазных коллекторных электродвигателей можно сделать на распространённых деталях буквально за 1 вечер. Эта схема имеет встроенный модуль обнаружения перегрузки, обеспечивает мягкий пуск управляемого двигателя и стабилизатор скорости вращения мотора. Работает такой блок с напряжением как 220, так и 110 вольт.

Технические параметры регулятора

  • напряжение питания: 230 вольт переменного тока
  • диапазон регулирования: 5…99%
  • напряжение нагрузки: 230 В / 12 А (2,5 кВт с радиатором)
  • максимальная мощность без радиатора 300 Вт
  • низкий уровень шума
  • стабилизация оборотов
  • мягкий старт
  • размеры платы: 50×60 мм

Принципиальная электросхема

Схема регулятор мотора на симисторе и U2008

Схема модуля системы регулирования основана на генераторе ШИМ импульсов и симисторе управления мотором — классическая схемотехника для подобных устройств. Элементы D1 и R1 обеспечивают ограничение величины напряжения питания до значения безопасной для питания микросхемы генератора. Конденсатор C1 отвечает за фильтрацию напряжения питания. Элементы R3, R5 и P1 являются делителем напряжения с возможностью его регулирования, который используется для задания величины мощности, подаваемой в нагрузку. Благодаря применению резистора R2, непосредственно входящего в цепь поступления на м/с фазы, внутренние блоки синхронизированы с симистором ВТ139.

Печатная плата

На следующем рисунке показано расположение элементов на печатной плате. Во время монтажа и запуска следует обратить внимание на обеспечение условий безопасной работы — регулятор имеет питание от сети 220В и его элементы непосредственно подключены к фазе.

Увеличение мощности регулятора

В испытательном варианте был применен симистор BT138/800 с максимальным током 12 А, что дает возможность управления нагрузкой более 2 кВт. Если необходимо управление ещё большими токами нагрузки — советуем тиристор установить за пределами платы на большом радиаторе. Также следует помнить о правильном выборе предохранителя FUSE в зависимости от нагрузки.

Кроме управления оборотами электромоторов, можно без каких-либо переделок использовать схему для регулировки яркости ламп.

Leave a Reply