Разное

Wifi мощная антенна – Мощная Wi-Fi антенна своими руками

Содержание

Мощная Wi-Fi антенна своими руками

Это простоя в изготовлении и очень мощная как пушка Wi-Fi антенна. С помощью неё можно принимать и передавать Wi-Fi сигнал не то что на сотни метров, а на несколько километров!
Антенна-пушка напоминает вид космического бластера и так же как это фантастическое оружие имеет направленное и очень мощное действие.
Мощная Wi-Fi антенна-пушка
Это направленная антенна. И именно это свойство дает большое расстояние приема из-за большой концентрации сигнала в одном направлении.
Мощная Wi-Fi антенна-пушка

Схема-чертеж антенны


Мощная Wi-Fi антенна-пушка
На чертеже представлены размеры между элементами антенны. Её резонансная частота настроена на середину частоты Wi-Fi 2,4 ГГц.

Для изготовления антенны понадобится


  • Длинная шпилька с гайками.
  • Металлический лист, я взял медный, так как он очень просто режется. Вообще можно взять и жесть от консервных банок.
  • Wi-Fi Адаптер. Но можно подключить уже к имеющемуся роутеру.

Мощная Wi-Fi антенна-пушка

Изготовление мощной Wi-Fi антенны-пушки


Прежде чем приступить к изготовлению антенны, нужно знать, что любое отклонение от заданных размеров сильно ухудшит ее характеристики. Поэтому все нужно делать максимально точно.
Берем лист металла и примерно размечаем центры диаметров кругов. Затем сверлим центра. Для точности, место перед сверлением керним или проходимся тонким сверло, а затем толстым. В итоге диаметр отверстия должен быть чуть больше шпильки.
Мощная Wi-Fi антенна-пушка
Затем берем циркуль и вычерчиваем кругляши на металле.
Мощная Wi-Fi антенна-пушка
Вырезаем сначала квадрат.
Мощная Wi-Fi антенна-пушка
Потом вырезаем аккуратно круг.
Мощная Wi-Fi антенна-пушка
Получились круги для антенны.
Мощная Wi-Fi антенна-пушка
Взял длинную шпильку. Обрезал лишнее по длине антенны, учитывая ширину гайки.
Мощная Wi-Fi антенна-пушка
Вот и готовый комплект для сборки.
Мощная Wi-Fi антенна-пушка
Собираем антенну. Все очень просто, как конструктор в детстве.
Мощная Wi-Fi антенна-пушка
Для контроля размеров рекомендую использовать металлическую линейку, так как она более точная.
Мощная Wi-Fi антенна-пушка
В последних двух дисках необходимо сделать отверстия для подключения кабеля.
Мощная Wi-Fi антенна-пушка
Разъем с кабелем мы сделаем из старой антенны от роутера или адаптера.
Мощная Wi-Fi антенна-пушка
Снимаем верхний кожух.
Мощная Wi-Fi антенна-пушка
Срезаем изоляцию. Антенна отцепилась сама, потому что была запрессована.
Мощная Wi-Fi антенна-пушка
Далее отпаиваем металлический колпак.
Мощная Wi-Fi антенна-пушка
И разъем для подключения готов.
Мощная Wi-Fi антенна-пушка
Лудим диски. Медь в этом плане отличная штука. Как-то я делал такую антенну из корпуса старого компьютера, так там приходилось лудить с кислотой.
Мощная Wi-Fi антенна-пушка
Мощная Wi-Fi антенна-пушка
Пропускаем через отверстие последнего круга кабель и припаиваем экранирующую обмотку к диску.
Мощная Wi-Fi антенна-пушка
Мощная Wi-Fi антенна-пушка
Мощная Wi-Fi антенна-пушка
Теперь среднюю жилу пропускаем в отверстие второго диска и припаиваем.
Мощная Wi-Fi антенна-пушка
Мощная Wi-Fi антенна-пушка
Антенна почти готова. Я установлю ее на кронштейн от фотоаппарата. Будет такой домашний вариант.
Мощная Wi-Fi антенна-пушка
К выходу разъема прикручиваем Wi-Fi адаптер.
Мощная Wi-Fi антенна-пушка
Можно примотать его изолентой или скотчем к кронштейну.
Мощная Wi-Fi антенна-пушка
Я поставлю антенну на окошко и направлю на объекты, где может быть сигнал.
Мощная Wi-Fi антенна-пушка
Ого, сколько сетей появилось. Хотя раньше я ловил сигнал только своего роутера. В нашем городе не много точек для доступа.
Мощная Wi-Fi антенна-пушка
Результат поразительный.
Мощная Wi-Fi антенна-пушка
Мощная Wi-Fi антенна-пушка

Дополнения


Чтобы усилить эффект, я решил установить такую пушку на крышу. Но для этого мне необходимо припаять вместо разъема обычный экранированный кабель, который я использую для спутниковой тарелки.
Мощная Wi-Fi антенна-пушка
Мощная Wi-Fi антенна-пушка
Немного рассверлим отверстие и доработаем штеккер кабеля.
Мощная Wi-Fi антенна-пушка
Мощная Wi-Fi антенна-пушка
Фиксируем изолентой.
Мощная Wi-Fi антенна-пушка
Ставим на крышу, располагая на шесте.
Мощная Wi-Fi антенна-пушка
Мощная Wi-Fi антенна-пушка
Количество сетей превысило все мои ожидания.

Результат


Результат был таков, что на однотипную антенну можно без особых проблем связаться на расстояние около 10 километров! И это без всяких усилителей и специального оборудования.
С помощью такой мощной Wi-Fi пушки — антенны можно передать сигнал в гараж, на работу, в школу, на дачу. Все материалы доступны абсолютно каждому, а делается все очень просто.

Смотрите видео


Более подробную инструкцию по сборке можно узнать посмотрев видео ниже. Так же там показаны более широкие испытания этой мощной Wi-Fi антенны.

PS: Если вы будете делать уличный вариант, то для изоляции и от коррозии всю антенну будет неплохо покрасить обычной краской по металлу.

sdelaysam-svoimirukami.ru

Wi-Fi антенна своими руками: направленная и всенаправленная

Здравствуй, дорогой читатель! Сегодня расскажу вам, как я сделал мощную WiFi антенну своими руками. Руки у меня, конечно, золотые, только растут не из того места, но и это мне не помешало. Для начала давайте разберёмся в так называемом коэффициенте усиления антенны. Не переживайте! Я не буду использовать заумные фразы или оперировать какими-то сложными терминами, но с этим нужно разобраться.

Данная величина измеряется в изотропных децибелах и обозначаются как «дБи» или «dBi». Словосочетание можно не запоминать, но вот буковки стоит запомнить. На домашних роутерах обычно стоят маломощные антеннки в 2-4 dBi. Но как показывает практика, в загородных домах или больших офисных помещениях — этого показателя не хватает.

Самодельная Wi-Fi антенна своими руками: направленная и всенаправленная

Самодельная Wi-Fi антенна своими руками: направленная и всенаправленная

Поэтому мы сегодня будем делать самодельную антенну от 10 до 20 dBi. Больше и мощнее делать нет смысла. Всё дело в том, что с увеличением мощности усиления пучок сигнала становится более направленным и узким. А радиус покрытия становится ниже. Взгляните на картинку выше. То есть ловить такой сигнал можно, но куда сложнее, так как пучок становится слишком узким.

Такие антенны ещё называют направленные. Их можно конструировать, если нужно объединить, например два загородных дома в одну сеть путём моста. При этом если они находятся на расстоянии до 10 км.

Теперь давайте разберёмся с частотой. Современные роутеры имеют два диапазона: 2.4 ГГц и 5 ГГц — это частота передачи данных. Понятно дело, что последний диапазон имеет большую скорость, но и имеет один минус. Как вы, наверное, помните из физики 7 класса, чем выше частота волны – тем быстрее она затухает. То есть радиус покрытия у 5 ГГц явно ниже.

Самодельная Wi-Fi антенна своими руками: направленная и всенаправленная

Самодельная Wi-Fi антенна своими руками: направленная и всенаправленная

После долгих раздумий самым лучшим вариантом именно для домашнего использования выбор пал на квадратную антенну. Она имеет такую форму, что коэффициент усиления можно довести до 20 дБи. И даже при такой мощности пучок сигнала не будет таким узким. Для дома она будет выступать как всенаправленная антенна с большим радиусом.

Во второй главе я расскажу, как сделать мощную Wi-Fi антенну-пушку для роутера своими руками. Панельная антенна будет значительно усиливать сигнал адаптера, но в более узком направлении. Об её дальнейшем использовании я также расскажу в самом конце.

Инструкция для усиления вай-фай дома

Самодельная Wi-Fi антенна своими руками: направленная и всенаправленная

Самодельная Wi-Fi антенна своими руками: направленная и всенаправленная
  1. Нам нужно сделать крепление, на котором будет восседать наша антеннка. У меня остался старая упаковка от CD-дисков. Возьмите и отрежьте примерно чуть выше середины сердцевину. После этого нужно круглым надфилем сделать маленькие ямки. Таким образом, чтобы получилось 4 выемки в виде ровного креста.

Самодельная Wi-Fi антенна своими руками: направленная и всенаправленная

Самодельная Wi-Fi антенна своими руками: направленная и всенаправленная
  1. Теперь нужно взять кусок медного провода с диаметров от 2-4 мм и сделать из него резонатор. Он как раз и будет выступать основным рассеивателем луча радиоволн. Теперь с помощью плоскогубцев нужно ровно сделать 2 квадрата с длинной ребра в 29-31 мм. Самое главное – посмотрите, чтобы между углами соприкосновения квадратов – было свободное место.

Самодельная Wi-Fi антенна своими руками: направленная и всенаправленная

Самодельная Wi-Fi антенна своими руками: направленная и всенаправленная
  1. И так теперь нам понадобится коаксиальный кабель. Сердцевину мы припаиваем к одному углу, а оплётку припаиваем к другому концу.

Самодельная Wi-Fi антенна своими руками: направленная и всенаправленная

Самодельная Wi-Fi антенна своими руками: направленная и всенаправленная
  1. Промазываем клеем дно коробочки и приклеиваем туда диск. Он будет служить как отражатель пучка радиоволны. Можно, конечно, приклеить фольгу, но диск более эстетично выглядит. Теперь аккуратно проталкиваем провод в отверстие и также приклеиваем квадраты к полукруглым пазам, которые мы сделали ранее.

Самодельная Wi-Fi антенна своими руками: направленная и всенаправленная

Самодельная Wi-Fi антенна своими руками: направленная и всенаправленная
  1. Сверху также завариваем клеем для надёжности конструкции.

Самодельная Wi-Fi антенна своими руками: направленная и всенаправленная

Самодельная Wi-Fi антенна своими руками: направленная и всенаправленная
  1. Заклеиваем и заднюю часть, чтобы провод не вырвало. Можно приклеить один провод, всё заливать клеем – не нужно.

Самодельная Wi-Fi антенна своими руками: направленная и всенаправленная

Самодельная Wi-Fi антенна своими руками: направленная и всенаправленная
  1. Теперь надо просто подключить разъём коаксиального кабеля к SMA порту, к которому как раз и прикручиваются антенны. Там все просто, центральную жилу припаиваем к центру SMA, а оплётку к внешней части.

Самодельная Wi-Fi антенна своими руками: направленная и всенаправленная

Самодельная Wi-Fi антенна своими руками: направленная и всенаправленная
  1. Для тех, кто любит паять, можно вскрыть маршрутизатор и напрямую припаять нашу антенну к плате. Но нужно понимать, что это достаточно небезопасно для роутера, и если вы в этом не разбираетесь – то лезть не стоит. Плюс можно повредить саму плату при отсутствии нужного паяльника.

Самодельная Wi-Fi антенна своими руками: направленная и всенаправленная

Самодельная Wi-Fi антенна своими руками: направленная и всенаправленная
  1. В конце у вас должно получится, что-то вроде такого, как у меня «самоделкина». Выглядит не очень, но пробивает стены при частоте 2.4 ГГц – на ура! Для большого загородного дома вполне сойдет. При правильной установке будет отлично ловить даже не улице.

Направленная антенна на большое расстояние

Сразу скажу эта антенна более мощная, но и как я говорил из-за мощности пучок становится более направленным и узким. Поэтому его стоит использовать для соединения между собой несколько сетей по воздуху. Даже можно использовать как повторитель. Вайфай пушка сможет бить на расстояние до 10 км.

Делается она достаточно просто и все материалы можно купить в любом радиомагазине. Всё же она по использованию – большое наружная или внешняя, для отправки сигнала на большое расстояние. Но вы сами решаете, как её использовать. Для постройки моста нужно сделать вторую, которая будет также выступать как приемник.

Самодельная Wi-Fi антенна своими руками: направленная и всенаправленная

Самодельная Wi-Fi антенна своими руками: направленная и всенаправленная

Вот схема по которой мы будем делать нашу антенну. Сразу скажу, что нужно делать максимально точно как можете, по чертежу. Если будут сильные отклонения от размеров и расстояний между пластинами – то связь будет хуже. Также ещё один момент – все размеры предназначены для раздачи 2.4 ГГц волны.

Самодельная Wi-Fi антенна своими руками: направленная и всенаправленная

Самодельная Wi-Fi антенна своими руками: направленная и всенаправленная
  1. Из листа меди нарезаем ровные круги, а в центре просверливаем дырку для шпильки. Также нам понадобятся гайки по размеру шпильки.

Самодельная Wi-Fi антенна своими руками: направленная и всенаправленная

Самодельная Wi-Fi антенна своими руками: направленная и всенаправленная
  1. Точно линейкой начните прикручивать диски. Постарайтесь сделать максимально приближённо к схеме. Начните прикручивать с маленьких дисков. На последних двух надо будет сделать дырочки как на картинке ниже.

Самодельная Wi-Fi антенна своими руками: направленная и всенаправленная

Самодельная Wi-Fi антенна своими руками: направленная и всенаправленная
  1. Теперь нам понадобится любая старая антенна из-под роутера. Можете использовать и рабочую. Снимаем с неё верхний колпачок и отрезаем основную часть. Также снимаем резиновую часть, под которой будет металлический купол. Его аккуратно обрезаем, а под ним вы увидите проводок, который нам и нужен.

Самодельная Wi-Fi антенна своими руками: направленная и всенаправленная

Самодельная Wi-Fi антенна своими руками: направленная и всенаправленная
  1. Помните те дырочки, который мы делали? – вот проводок нужно запихнуть в них под прямым углом и припаять к пластинам, как на картинке снизу.

Самодельная Wi-Fi антенна своими руками: направленная и всенаправленная

Самодельная Wi-Fi антенна своими руками: направленная и всенаправленная
  1. Далее антенну можно прикрутить к роутеру. Но если вы будете использовать пушку как мост, то в этом случае её нужно устанавливать на крышу или на улицу. Тогда можно вместо этой антенны припаять коаксиальный кабель. И для этого случая нам понадобится вторая пара дырок, о которых мы почему-то забыли.

Самодельная Wi-Fi антенна своими руками: направленная и всенаправленная

Самодельная Wi-Fi антенна своими руками: направленная и всенаправленная
  1. Мне пришлось немного расширить дырку просверлив более толстым сверлом. Далее я просто вставил её в отверстие, но припаял не к первому диску, а ко второму, в котором тоже должна быть вторая дырочка. Теперь провод надо будет чем-то закрепить, можно примотать изолентой или ещё чем-то. Тут у вас есть пространство для размышления.

Самодельная Wi-Fi антенна своими руками: направленная и всенаправленная

Самодельная Wi-Fi антенна своими руками: направленная и всенаправленная
  1. Ставим её на крышу. Если таки образом будете ловить вторую сеть из другого дома, чтобы брать оттуда интернет и сетевые ресурсы, то антенну надо будет чётко повернуть ровно в сторону, где будет стоять аналогичная антенна. А мост можно сделать за счёт двух роутеров.

Как показала практика, такая антеннка достаточно мощная для загородного использования и может пробивать до 10 километров дальности на прямую. Только надо учитывать ещё и препятствия, которые будут гасить сигнал. Поэтому её нужно устанавливать как можно выше. Также не забываем о грозах и молниях, поэтому помимо неё надо установить громоотвод.

Чисто теоретически к такому аппарату дальнего действия можно присобачить телевизор и использовать её для поимки каналов. Если пойти глубже, то ею можно усилить приём любого сигнала для телефона, ноутбука и т.д.

wifigid.ru

Мощная самодельная Wi-Fi антенна для приема удаленных сетей

Довольно часто можно найти открытые Wi-Fi сети с хорошей скоростью раздачи. Однако они имеют ограниченный радиус действия, что не позволяет постоянно рассчитывать на бесплатный интернет. Разрешить такую ситуацию можно воспользовавшись мощной антенной, способной улавливать Wi-Fi за несколько километров от его источника.
Мощная самодельная WiFi антенна для приема сигнала удаленных открытых сетей

Необходимые материалы:


  • крышечки для консервирования – 20 шт.;
  • шпилька М8 – 50 см;
  • гайки и шайбы М8;
  • Wi-Fi адаптер;
  • коаксиальный кабель с коннектором под адаптер.

Мощная самодельная WiFi антенна для приема сигнала удаленных открытых сетей

Изготовление антенны


Для сборки антенны необходимо вырезать круглые пластинки из крышек для консервирования. Перед этим на них требуется найти центр и просверлить в нем отверстие 8 мм для дальнейшего нанизывания пластинок на шпильку.
Определить центр можно с помощью обычной канцелярской линейки. Она прикладывается на крышечку таким образом, чтобы ее углы находились по линии окружности. Фломастером наводятся две параллельные линии по краю линейки, после чего делаются такие же отметки, но уже со смещением на 90 градусов. Как следствие на крышечке получится решетка с квадратом посередине. Проведя в нем диагонали можно отметить центр для сверления. Удобней всего разметить одну крышку и сверлить их все вместе в стопке, что намного ускорит процесс.
Мощная самодельная WiFi антенна для приема сигнала удаленных открытых сетей
Далее необходимо подрезать крышки под диаметр соответствующий схеме антенны. Для этого первая крышка оставляется без изменений, вторая срезается под 68 мм, третья под 50 мм, и еще 17 штук под 40 мм.
Мощная самодельная WiFi антенна для приема сигнала удаленных открытых сетей
Очень важно сделать обрезку ровно, поэтому сначала делается разметка. Окружность вычерчивается циркулем или с помощью скрепки.
Мощная самодельная WiFi антенна для приема сигнала удаленных открытых сетей
Вырезать можно обыкновенными канцелярскими ножницами.
Мощная самодельная WiFi антенна для приема сигнала удаленных открытых сетей
В дальнейшем к антенне потребляется присоединение кабеля, поэтому на этапе обработки диска нужно проделать отверстия под его жилу. Их нужно сверлить за 2 см от края на двух самых больших дисках. На первом диаметром 90 мм нужно использовать сверло 7 мм, на втором диске 68 мм применяется сверло 0,7 мм.
Мощная самодельная WiFi антенна для приема сигнала удаленных открытых сетей
Мощная самодельная WiFi антенна для приема сигнала удаленных открытых сетей
Если применяется адаптер на 2 антенны, то понадобиться сделать еще 2 аналогичные отверстия. Они сверлятся со смещением относительно первых на четверть круга.
Далее на шпильку устанавливаются диски. Сначала зажимается 17 маленьких, потом 50 мм, 68 мм и 90 мм. Расстояние между мелкими сегментами составляет 22 мм. Каждый диск зажимается между двумя гайками М8.
Мощная самодельная WiFi антенна для приема сигнала удаленных открытых сетей
Перед пластиной диаметром 50 мм необходимо сделать отступ 12 мм, перед 68 мм – 9 мм, а перед 90 мм – 7 мм. Последние элементы зажимаются с помощью шайб, поскольку гайки гораздо шире нужного зазора.
Мощная самодельная WiFi антенна для приема сигнала удаленных открытых сетей
Мощная самодельная WiFi антенна для приема сигнала удаленных открытых сетей
Для использования антенны к ней необходимо подключить коаксиальный провод. Для этого нужно зачистить центральную жилу на несколько сантиметров, после чего еще на сантиметр снять верхнюю изоляцию и установить часть F-разъема или другой наконечник. После этого провод сначала вставляется в диск 90 мм. Вокруг его отверстия имеется выгнутый металл, который можно обжать бокорезами, надежно зафиксировав кабель.
Мощная самодельная WiFi антенна для приема сигнала удаленных открытых сетей
Центральную жилу провода также следует обжать металлом по ободку отверстия на диске 68 мм.
Мощная самодельная WiFi антенна для приема сигнала удаленных открытых сетей
Мощная самодельная WiFi антенна для приема сигнала удаленных открытых сетей
Самодельная антенна присоединяется вместо штатной антенны к USB Wi-Fi адаптеру. После этого он подключается к компьютеру или ноутбуку.
Мощная самодельная WiFi антенна для приема сигнала удаленных открытых сетей
После того производится автоматический поиск, который показывает десятки сетей, некоторые из которых могут быть бесплатными или с открытым доступом.
Мощная самодельная WiFi антенна для приема сигнала удаленных открытых сетей
Также антенну через переходник можно подключить и к планшету либое к ноутбуку.
Мощная самодельная WiFi антенна для приема сигнала удаленных открытых сетей
Мощная самодельная WiFi антенна для приема сигнала удаленных открытых сетей
Мощная самодельная WiFi антенна для приема сигнала удаленных открытых сетей
Также его можно присоединить к роутеру и настроить раздачу.
Мощная самодельная WiFi антенна для приема сигнала удаленных открытых сетей
Мощная самодельная WiFi антенна для приема сигнала удаленных открытых сетей

Смотрите видео


sdelaysam-svoimirukami.ru

Мощная антенна для приема и раздачи Wi-Fi сигнала


Всем доброго времени. В данной статье речь пойдёт, о WI-FI пушке способной принимать и раздавать сигнал на расстоянии нескольких км.

Собирал автор пушку по этой схеме.

Из медного листа толщиной 3 мм (можно использовать любой листовой металл).

И шпильки с гайками.

Из листа автор вырезал диски с отверстием по центру. Размеры дисков и расстояние между ними указаны на схеме.

Далее от шпильки отрезал лишнее и установил на неё диски согласно схеме.


Регулируя расстояние между дисками и фиксируя их гайками.

На двух последних диска, сделал ещё пару отверстий для провода.

Подключать пушку будет сначала к сетевому адаптеру WiFi.

Затем к телефону.

И в конце к Wi-Fi роутеру для раздачи сигнала.

Для подключения пушки к Wi-Fi свистку автор аккуратно разберёт антенну.

И припаяет провода от антенны к дискам пушки.

Наружный провод к самому большому диску.


А центральный провод к следующему диску.


После укрепляет пушку на кронштейн.

Подключает адаптер и ноутбук.

Результат.

Меняет направление пушки.

Результат.


Для того, чтобы пушка смогла ловить сигнал на ещё большем расстоянии автор установит её на крышу. Для этого он подключит к ней один край кабеля от спутникового ТВ.

Второй край ТВ провода подключит к адаптеру через переходник Пигтейл.

Зафиксирует пушку на палку и укрепит на крыше.


Результат.

Для того, чтобы подключить пушку к телефону.

Автор зачистил край провода.

И скрутил его таким образом.


И с помощью чехла прижал его к телефону, в том месте где у телефона антенна.

Тест.


Результат.

Для раздачи сигнала подключит пушку к роутеру.

Направил пушку вдоль улицы.

Результат на расстоянии 300 м.

На расстоянии 3 км телефон потерял сигнал.

И решил установить на крышу авто ещё одну пушку, таким образом он увеличил расстояние сигнала.

Результат на расстоянии 5 км.


На расстоянии 9 км сигнал и скорость значительно снизились. Но по словам автора, при помощи такой пушки, можно передать сигнал на работу в школу или гараж.

Спасибо всем и до новой встречи.

Видео:


Источник Доставка новых самоделок на почту

Получайте на почту подборку новых самоделок. Никакого спама, только полезные идеи!

*Заполняя форму вы соглашаетесь на обработку персональных данных

Становитесь автором сайта, публикуйте собственные статьи, описания самоделок с оплатой за текст. Подробнее здесь.

usamodelkina.ru

WiFi антенна своими руками для роутера: направленная пушка, биквадрат двойной

Хотите собрать дальнобойную WiFi антенну, тогда следует знать о некоторых её особенностях.

 

Первое и самое простое: большие антенны в 15 или 20 dBi (децибел изотропных) являются предельными по мощности, и не нужно делать их ещё мощнее.

 

Вот наглядная иллюстрация, как с ростом мощности антенны в dBi уменьшается зона её покрытия.

Делаем сверхдальнюю WiFi антенну

Так получается, что с увеличением дистанции действия антенны, площадь её покрытия значительно уменьшается. Дома вам придется постоянно ловить узкую полоску действия сигнала при слишком мощном WiFi излучателе. Встанете с дивана или приляжете на пол, и связь тут же пропадет.

 

Вот почему домашние роутеры имеют обычные, излучающие во все стороны, антенны мощностью в 2 dBi—так они наиболее эффективны на короткой дистанции.

Направленная

Антенны на 9 dBi работают только в заданном направлении (направленного действия) — в комнате они бесполезны, их лучше применять для дальней связи, во дворе, в гараже рядом с домом. Направленную антенну при установке потребуется регулировать для передачи четкого сигнала в нужном направлении.

 Направленную антенну при установке

Теперь к вопросу о несущей частоте. Какая антенна будет лучше работать на дальнем расстоянии, в 2.4 или 5 ГГц?

 

Сейчас есть новые роутеры, работающие на удвоенной частоте в 5 ГГц. Такие маршрутизаторы все еще остаются новинкой, они хороши для скоростной передачи данных. Но сигнал 5 ГГц не очень хорош для дальних расстояний, так как затухает быстрее, чем при 2.4 ГГц.

 

Потому старые роутеры на 2.4 ГГц будут работать лучше в дальнобойном режиме, чем новые быстродействующие в 5 ГГц.

 

Чертёж двойного самодельного биквадрата

 

Первые образцы самодельных распространителейWiFi сигнала, появились еще в 2005 году.

 

Наилучшие из них конструкции биквадрат, обеспечивающие усиление до 11–12 dBi и двойной биквадрат, имеющие несколько лучший результат в 14 dBi.

двойной биквадрат

двойной биквадрат

Согласно опыту использования, конструкция биквадрат является более подходящей в качестве многофункционального излучателя. Действительно, преимуществом этой антенны является то, что при неизбежном сжатии поля излучения, угол раскрытия сигнала остается достаточно широким, чтобы покрыть всю площадь квартиры при правильной установке.

 

Все, возможные, версии биквадратной антенны являются простыми в реализации.
двойной биквадрат

Необходимые детали

  • Металлический рефлектор—кусок фольгированноготекстолита123х123 мм, лист фольги, CD, DVD компакт диск, алюминиевая крышка с чайной банки.
  • Медная проволока сечением 2.5 мм.кв.
  • Отрезок коаксиального кабеля, лучше с волновым сопротивлением 50 Ом.
  • Пластмассовые трубочки — можно нарезать из шариковой ручки, фломастера, маркера.
  • Немного термоклея.
  • Разъем N-типа — пригодится для удобного подсоединения антенны.

 

Изготовление излучателя

 

Для частоты 2.4 ГГц, на которой планируется использовать передатчик, идеальными размерами биквадрата будут 30.5 мм. Но все-таки мы делаем не спутниковую антенну, поэтому допустимы некоторые отклонения в размерах активного элемента —30–31 мм.

Изготовление излучателя

К вопросу о толщине проволоки также нужно отнестись внимательно. С учетом выбранной частоты 2.4 ГГц, медную жилу надобно найти толщиной точно в 1.8 мм (сечением 2.5 мм.кв.).

о толщине проволоки

От края проволоки отмеряем расстояние 29 мм до загиба.

о толщине проволоки

Делаем следующий загиб, проконтролировав наружный размер в 30–31 мм.

о толщине проволоки

Следующие загибы вовнутрь делаем на расстоянии 29 мм.

о толщине проволоки

Проверяем самый важный параметр у готового биквадрата —31 мм по средней линии.

Пропаиваем

Пропаиваем места для будущего крепления выводов коаксиального кабеля.

 

Рефлектор

 

Основная задача железного экрана за излучателем — отражать электромагнитные волны. Правильно отраженные волны будут накладываться своими амплитудами на колебания только что выпущенные активным элементом. Возникающая усиливающая интерференция даст возможность максимально далеко распространитьэлектромагнитныеволны от антенны.

 

Чтобы добиться полезной интерференции надо расположить излучатель на расстоянии кратном четверти длины волны от отражателя.

 

Расстояние от излучателя до рефлектора для антенн биквадрат и двойной биквадрат находим как лямбда / 10 — определяемую особенностями данной конструкции / 4.

Лямбда — длина волны, равная скорости света в м/с деленной на частоту в Гц.

Длина волны при частоте 2.4 ГГц — 0.125 м.

 

Увеличив пятикратно рассчитанное значение, получим оптимальное расстояние — 15.625 мм.

 

Размер рефлектора сказывается на коэффициенте усиления антенны в дБи. Оптимальные размеры экрана для биквадрата — 123х123 мм или больше, только в этом случае можно добиться усиления в 12 dBi.

 

Размеров CD иDVD дисков явно недостаточно для полного отражения, поэтому антенны биквадраты, построенные на них, имеют коэффициент усиления лишь в 8 dBi.

 

Ниже приведен пример использования крышки с чайной банки в качестве рефлектора. Размера такого экрана тоже недостаточно, коэффициент усиления антенны меньше, чем ожидалось.

рефлектор

Форма рефлектора должна быть только плоской. Старайтесь также найти пластинки максимально гладкие. Изгибы, царапины на экране приводят к рассеиванию высокочастотных волн, по причине нарушения отражения в заданном направлении.

 

В выше рассмотренном примере бортики на крышке явно лишние — они снижают угол раскрытия сигнала, создают рассеиваемые помехи.

 

Как только пластинка рефлектора будет готова, у вас есть два способа собрать на нем излучатель.

  1. Установить медную трубку с помощью пайки.

Установить медную трубку

Установить медную трубку

Чтобы зафиксировать двойной биквадрат понадобилось дополнительно сделать две стоечки из шариковой ручки.

 

  1. Закрепить все на пластмассовой трубке используя термоклей.

Закрепить все на пластмассовой трубке

Берем пластмассовую коробочку для дисков на 25 штук.

Отрезаем центральный штырь

Отрезаем центральный штырь, оставив по высоте на 18 мм.

Прорезаем надфилем

Прорезаем надфилем или напильником четыре шлица в пластмассовом штыре.

Прорезаем надфилем

Подравниваем шлицы одинаково по глубине

Устанавливаем самодельную рамочку

Устанавливаем самодельную рамочку на шпиндель, проверяем, дабы её края оказались на одинаковой высоте от дна коробочки — около 16 мм.

Припаиваем выводы кабеля

Припаиваем выводы кабеля к рамке излучателя.

Взяв клеевой пистолет

Взяв клеевой пистолет, закрепляем CD диск на дне пластмассой коробочки.

Взяв клеевой пистолет

Взяв клеевой пистолет

Продолжаем работать клеевым пистолетом, фиксируем на шпинделе рамку излучателя.

 фиксируем на шпинделе рамку излучателя

С обратной стороны коробочки фиксируем термоклеем кабель.

 

Подключение к роутеру

 

У кого есть опыт, тот с легкостью припаяется к контактным площадкам на монтажной плате внутри роутера.

 

Иначе, будьте осторожны, тонкие дорожки могут оторваться от печатной платы при долговременном прогреве паяльником.

 

Можно к уже припаянномукусочку кабеляродной антенны подключиться через разъем SMA. С приобретением любого другого радиочастотного соединителя N-типа в ближайшей точке торговли электроникой не должно возникнуть проблем.

Подключение антенны к роутеру

 

Тесты антенны

 

Испытания показали, что идеальный биквадрат дает усиление около 11–12 дБи, а это до 4 км направленного сигнала.

 

Антенна из CDдиска дает 8 дБи, поскольку получается поймать WiFiсигнал на расстоянии 2 км.

 

Двойной биквадрат предоставляет 14 дБи— немного больше 6км.

 

Угол раскрытия антенн с квадратным излучателем составляет около 60 градусов, чего вполне достаточно для двора частного дома.

 

О дальности действия Вай Фай антен

 

От родной роутерной антенны на 2 dBi сигнал 2.4 ГГц, стандарта 802.11n может распространиться на 400 метров в пределах прямой видимости. Сигналы 2.4 ГГц, старых стандартов 802.11b, 802.11g хуже распространяются, имея вдвое меньшую дальность по сравнению с 802.11n.

 

Считая WiFi антенну за изотропный излучатель — идеальный источник, распространяющий электромагнитную энергию равномерно во всех направлениях, можно руководствоваться логарифмической формулой перевода дБи в прирост мощности.

 

Децибел изотропный (дБи) — коэффициент усиления антенны, определяемый как умноженный на десять десятичный алгоритм отношения усиленного электромагнитного сигнала к исходному его значению.

 

AdBi = 10lg(A1/A0)

 

Перевод дБи антен в прирост мощностей.

A,дБи302018161514131210965321
A1/A01000100≈64≈40≈32≈25≈20≈1610≈8≈4≈3.2≈2≈1.6≈1.26

 

Судя по таблице, несложно сделать вывод, что направленный WiFi передатчик максимально допустимой мощности в 20 дБи может распространить сигнал в даль на 25 км при отсутствии преград.

 

Дальнейшее увеличение мощности антенны неразумно, распространение сигнала будет идти в слишком узкой зоне, имеющей форму диска.

 

Автор: Виталий Петрович, Украина, Лисичанск


 

volt-index.ru

Ловим чужой WiFi на расстоянии 1 км / РЭМО corporate blog / Habr

В прошлой статье мы рассмотрели варианты увеличения зоны покрытия WiFi для роутеров с внешними штыревыми антеннами. Но рассмотрим ситуацию «с другой стороны», в которой встроенный сетевой адаптер ноутбука или ПК плохо видит сеть, в результате чего сигнал WiFi принимается с низким уровнем, а в некоторых случаях, нужная WiFi сеть не видна вовсе. Конечно следует понимать, что встроенный WiFi адаптер не имеет направленной антенны и задачи у него совсем иные, нежели «дальний прием».


Перечислим несколько ситуаций, когда можно столкнуться с подобной проблемой.

— На турбазе, в хостеле, санатории где WiFi есть на ресепшене, а в вашем номере в лучшем случае вылавливается 1-2 деления сети;
— На лавочке на улице, где через дорогу есть кафе с бесплатным WiFi, до которого вроде и рукой подать, но уровня не хватает;
— Живете с родственниками или друзьями в соседних домах, у вас есть WiFi, а у них по какой-то причине нет и было бы здорово его передать им без проводов.

И множество подобных ситуаций, в которых мы оказываемся регулярно.
Итак, какие варианты решения этой задачи? Первым приходит в голову вариант использования внешней антенны для увеличения дальности действия адаптера, но к сожалению, адаптер встроенный и внешнего антенного входа для подключения антенн у него нет.

Можно использовать USB WiFi адаптер с наружной штыревой антенной для лучшего эффекта (рисунок 1). Однако, это не даст ощутимого увеличения радиуса действия. Дело в том, что такая штыревая антенна будет ненаправленной, а коэффициент усиления при её габаритах будет невысоким, в результате чего увеличить зону действия адаптера в разы не получится.


Рисунок 1. USB WiFi адаптер с наружной штыревой антенной

Можно использовать USB WiFi адаптер с антенным разъемом и подключить к нему направленную антенну, однако данная конструкция будет достаточно громоздкой и сложной. Все же это не массовый вариант, ведь не каждый захочет городить такую конструкцию. Да и не дешево это выйдет.
В конце концов, можно использовать обычный WiFi роутер и подключить его по витой паре к ноутбуку, однако, опять же, это не очень удобный и не самый дешевый способ на наш взгляд. Это решение имеет право на жизнь, но о мобильности и компактности подобной системы можно забыть.

Итак, в нашем распоряжении лишь ноутбук или ПК со встроенным WiFi адаптером, имеющим малый радиус действия. Задача: принять сигнал удаленной WiFi сети с хорошим уровнем. Проанализировав ситуацию, мы придумали решение «WiFi Agent» и хотим рассказать вам о нем.


Рисунок 2. Рендер устройства WiFi Agent

Это устройство — мобильный USB WiFi адаптер с мощной направленной антенной, которая позволяет видеть удаленные беспроводные сети с хорошим уровнем сигнала и подключаться к ним на большом расстоянии.

За основу была взята патч-антенна с коэффициентом усиления до 15 дБи, имеющая ярко выраженную диаграмму направленности в диапазоне частот 2.4-2.5 ГГц. В корпусе из радиопрозрачного пластика расположена антенна и плата WiFi адаптера на базе чипсета RTL8188, соединенные между собой коаксиальным кабелем длиной около 10 см, что сводит потери ВЧ сигнала в такой линии передачи к минимуму.

Для подключения антенны к компьютеру, на торцевой части корпуса выведен USB type B разъем, через который устройство подсоединяется к ноутбуку или ПК посредством идущего в комплекте USB (type A-type B) кабеля. Пользователь может использовать свой кабель произвольной длины, но в этом случае следует помнить, что слишком длинный кабель будет иметь высокие омические потери по шинам питания, и это может привести к тому, что устройство не будет определяться компьютером, или периодически «отваливаться».

Чтобы не быть голословными в оценках дальности работы нашего устройства, ниже приведем результаты испытаний в различных реальных условиях.

В первом эксперименте перед инженерами стояла задача проверить возможности «WiFi Agent» в условиях плотной городской застройки. Мы знаем, что для радиоволн на частотах 2.4ГГц помехами могут служить стены зданий и даже деревья. Для удобства мы решили удалять не приемник (нашу антенну), а передатчик сигнала: WiFi-роутер. Приемник расположен стационарно у окна офиса на 2-м этаже производственного здания и направлен на дорогу, по которой будет удаляться от приемника наш инженер с передатчиком.

В качестве передатчика WiFi сигнала использовался портативный роутер с автономным питанием (рисунок 3). Роутер подключен к 4G сети и раздает WiFi сеть — MF90PLUS_A5B14F.


Рисунок 3. Портативный роутер с автономным питанием
Рисунок 4. USB WiFi адаптер с ненаправленной антенной

Тестируем «WiFi Agent» в промзоне


Итак, измерения проводились в городских условиях, в промзоне — достаточно плотная застройка 2-3 этажными корпусами производственных зданий, приемник располагался на высоте 2 этажа производственного здания, что также усложняло прием сигнала. Измерения проходили на расстоянии в 163 метра между приемником (WiFi адаптером) и передатчиком (роутером).

Для начала в качестве приемника используем обычный USB WiFi адаптер (см. рисунок 4), на базе чипсета RTL8192 со встроенной ненаправленной антенной. Подключим его к ноутбуку и запустим утилиту InSSider Home (или любую другую, удобную вам) для мониторинга уровня WiFi сети (см. рисунок 6).

На рисунке 5 показан профиль местности, где проводились испытания.


Рисунок 5. Профиль местности, где проводился первый эксперимент


Рисунок 6. WiFi сети, видимые через обычный USB WiFi адаптер на базе RTL8192

Как видим, уровень сети очень слаб (-87dBm), мы едва смогли подключиться. К сожалению, время ожидания ответа страницы сайта измерителя скорости истекло и данные даже не были загружены.
Возьмём в качестве приемника USB WiFi антенну направленного действия «WiFi Agent». (см. рис. 7-8), подключаем ее к тому же USB порту ноутбука вместо обычного USB WiFi адаптера.


Рисунок 7. Антенна направленного действия «WiFi Agent».


Рисунок 8. WiFi сети, видимые через WiFi Agent

Уровень сигнала сети вырос на 15 dB до −72 dBm. Также, удалось найти еще 2 новых сети.

Проведем замер скорости (см. рисунок 9).


Рисунок 9. Измерение скорости соединения во время использования WiFi Agent
При дальнейшем удалении передатчика прямая видимость теряется из-за деревьев и зданий, находящихся на радиотрассе, поэтому эксперимент был завершен.

Результаты первого эксперимента


В результате первого эксперимента, в условиях сложного приема СВЧ сигнала, был достигнут стабильный прием WiFi сети (уровень −72 dBm) на расстоянии 163 метра по прямой. Может показаться, что это сравнительное малое расстояние, но надо понимать, что в качестве источника сигнала (передатчика) использовался портативный автономный роутер с встроенной антенной, который по уровню усиления антенны и излучаемой мощности уступает обычным комнатным роутерам с выносной штыревой антенной.

Дальность приема «Wi-Fi Agent» будет зависеть не только от нашей антенны (приемника), но и от передатчика (роутера), к которому вы хотите подключиться. Мы заявляем об этом с уверенностью, поскольку нами было проведено множество тестов устройства с разными передатчиками.

Тестируем «WiFi Agent» в жилом доме


Во втором эксперименте была поставлена цель оценить возможности антенны на большом удалении от передатчика при прямой видимости в открытом пространстве, причем между приемником и передатчиком на радиотрассе не должно быть каких-либо серьезных препятствий для прохождения СВЧ сигнала. Для соблюдения всех этих условий измерения проводились на 7 этаже девятиэтажного жилого дома. В качестве приемников использовался USB WiFi адаптер на базе чипсета RTL 8188 с ненаправленной антенной и наше устройство.

Как и в первом эксперименте, сначала проведем измерения с обычным USB WiFi адаптером. Подключаем адаптер к ноутбуку, запускаем утилиту для мониторинга WiFi сетей. На рисунке 10 показан список сетей, которые видит адаптер. В их числе есть сеть с адресом дома «Antonova d_.kv._» с низким уровнем сигнала −88 dBm, за ней и будем следить. Обратите внимание на уровень сигнала остальных сетей, представленный на этом же рисунке на диаграмме ниже, он достаточно невысокий.


Рисунок 10. Список сетей, видимых через обычный USB WiFi адаптер на базе RTL 8188

Подключим наше изделие и снимем показания (рисунок 11). Уровень измеряемой сети поднялся до −79 dBm, и в целом уровень сигнала прочих сетей также вырос. Оценим расстояние до передатчика.

Для этого построим профиль трассы, учитывая, что знаем дом, в котором расположен источник исследуемой нами сети (рисунок 12). В результате измерений мы получили дальность приема 1.02 км, при этом разница в усилении сигнала относительно WiFi адаптера с ненаправленной антенной составила 9 dB в пользу нашей антенны.


Рисунок 11. Список сетей, видимых через WiFi Agent


Рисунок 12. Профиль местности второго эксперимента

Заключение


Стоит упомянуть о программах, которые могут помочь вам при работе с каким-либо WiFi адаптером для мониторинга уровня WiFi сетей*

Windows:
» WirelessNetView
» NetSpot
» Free Wi-Fi Scanner

Linux:
» LinSSID
» iwScanner

OS X:
» NetSpot

Обратите внимание, что некоторый софт может быть представлен в виде демоверсий и иметь условно-бесплатное распространение.

Напоследок сделаем отступление. Один из наших покупателей, ознакомившись с нашим устройством был сильно удивлен его возможным применением и написал нам — вы сделали оборудование для воровства WiFi!

Конечно, злоумышленник может использовать «WiFi Agent» для противоправных целей. Но, с таким же успехом можно обвинить продавцов топоров в том, что новый «Раскольников» купит топор и нападет на старуху-процентщицу. А уж продавцы посуды — это вообще пособники преступников. Тут и ножи, и скалки, и страшное орудие — чугунная сковорода.

В свете последних принимаемых законов, необходимо отметить, что наше устройство не содержит в себе каких-либо криптографических шифровальных средств и не является WiFi роутером. USB WiFi адаптер с направленной антенной «WiFi Agent» не использует какие-либо средства для взлома чужих сетей и не делает процесс «воровства» ни на йоту проще, нежели штатный WiFi адаптер ноутбука.

Мы считаем, что вопрос использования каких-либо устройств в рамках закона это прямая обязанность потребителя. Поэтому, конечно же, совершая любое действие, всегда необходимо помнить о правовой стороне вопроса.

Мы рекомендуем использовать «WiFi Agent» в ситуациях, когда штатный WiFi адаптер вашего ноутбука или ПК принимает сигнал WiFi сети с низким уровнем, а также в случаях, когда вам необходимо пользоваться своей WiFi сетью, находясь на большом удалении от роутера.

habr.com

WiFi антенны на 2, 5, 10, 15 км и более.

WiFi антенны на 2, 5, 10, 15 км

Среди провайдеров Украины неизменным спросом пользуется беспроводное оборудование Ubiquiti и MikroTik — благодаря оптимальному соотношению цены, качества и производительности. Есть лишь одна небольшая сложность: ассортимент продукции у обоих производителей довольно обширен, и не всегда просто разобраться, какие точки доступа и антенны лучше всего купить. Наши менеджеры постоянно получают запросы вида:

  • Подберите мне WiFi антенны на 2 км для базовой станции.
  • На каком оборудовании можно построить WiFi мост на 15 км?
  • Какие WiFi антенны вы порекомендуете для моста на 5 км с хорошей пропускной способностью?

 

Мы несколько лет назад уже публиковали статью с рекомендациями Ubiquiti по подбору оборудования для линков различной дальности. Но за это время вышел новый стандарт WiFi 802.11ac , появилось много новых моделей с его поддержкой и без, поэтому возникла необходимость в новой подборке.

MikroTik также недавно опубликовал информацию о дальности своих самых популярных точек доступа, прочесть об этом можно в этой статье.

Сразу оговоримся: в дальнейшем речь пойдет о выборе именно точек доступа, то есть устройств, совмещающих в себе антенну и радиомодуль, или же комплектов из точки доступа и присоединяемой к ней внешней антенны. Однако многие называют точки доступа «антеннами WiFi», что не совсем верно, но довольно распространено, так что мы будем употреблять и такое обозначение тоже.

Приведенные решения спроектированы для базовых условий. Реальные результаты будут зависеть от окружающей среды, помех, трассы, пределов ЭИИМ и других факторов. 

Ubiquiti — WiFi антенны на 2, 5, 15 км для мостов

Линк PtP (Point-to-Point, «точка-точка»), или мост, соединяет друг с другом два устройства, расположенные в разных местах. Как правило, мост строится на расстоянии от 150-200 метров до нескольких десятков километров.

WiFi антенны на 2, 5, 15 км для мостов

WiFi антенны для мостов до 5 км

NanoBeam 5AC-16/19. Рекомендовано Ubiquiti для небольших расстояний. Превосходная производительность этих WiFi антенн обеспечивается благодаря airMax AC технологии, точки дают до 450 Мбит/сек пропускной способности.

Nanostation Loco M. Также подходит для коротких дистанций (из нашего опыта — до 3 км). PtP-решение минимальной стоимости, но поддерживаемый стандарт — только 802.11n, соответственно, пропускная ниже.

Nanostation M. Очень популярные WiFi антенны (точки доступа) для коротких расстояний, часто используются для видеонаблюдения благодаря наличию дополнительного порта Ethernet. Но все тот же стандарт 802.11n.

 

WiFi антенны для мостов 5-15 км

  • LiteBeam 5AC-23: Рекомендованное Ubiquiti клиентское оборудование, которое подходит также и для мостов. Превосходная производительность благодаря airMax AC стандарту, пропускная способность до 450 Мбит/сек.
  • PowerBeam 5AC.  Эти WiFi антенны советуются производителем в качестве клиентского оборудования для линков на большие расстояния, или для мостов на средние расстояния (5, 10, 15 км). Превосходная производительность благодаря airMax AC стандарту, пропускная способность до 450 Мбит/сек.
  • PowerBeam 5AC ISO.  Практически полностью повторяет PowerBeam 5AC, но благодаря изолятору дает хорошие результаты в зашумленной среде.
  • LiteBeam M. Эта WiFi антенна идеально подойдет для тех случаев, когда нет необходимости в высокой пропускной способности, где сама возможность подключения, ветровая нагрузка, низкая цена важнее производительности. Устройство не поддерживает MIMO, имеет одну поляризацию, стандарт 802.11n, поэтому канальная скорость — всего 150 Мбит/сек, реальная пропускная, соответственно, меньше.
  • PowerBeam M: Оптимальное соотношение цены и производительности для линков на средние дистанции, стандарт 802.11n.

 

 

WiFi антенны для мостов свыше 15 км

airFiber 5X + AF-5G (направленные антенны WiFi с узким лучом). Это комплект операторского класса для мостов на большие дистанции, возможна передача данных на расстояния 200+ км. Эффективное использование спектра, обеспечение пропускной способности до 620 Мбит/сек (с использованием ширины канала 50MHz).


Rocket 5AC + RocketDish LW. Превосходный комплект из узконаправленной WiFi антенны и точки доступа. Выбор для высокопроизводительных линков на длинные расстояния. TCP/IP пропускная способность до 450 Мбит/сек (с использованием ширины канала 80MHz). Дальность линков — 100+ км

 

 

Высокопроизводительные магистральные каналы

AirFiber 24HD. Отличная производительность. AirFiber 24HD обеспечивает до 2 Гбит/сек реальной пропускной способности на расстояниях  около 2 км в полосе частот 24 ГГц, и до 1.4 Гбит/сек в линках на расстояниях до 9 км. Тем не менее, при определенных обстоятельствах можно использовать устройство на расстояниях до 20 км.


AirFiber 24. AirFiber 24 обеспечивает до 1.4 Гбит/сек реальной пропускной способности на расстояниях около 5 км в полосе частот 24 ГГц. Можно использовать устройство и на расстояниях до 13 км, только пропускная будет меньше.


AirFiber 5/5U: Прекрасная пропускная способность в полосе частот 5 ГГц. Эти РРЛ обеспечивают до 1.2 Гбит/сек пропускной. Устройство можно использовать на расстояниях до 100 км.

 

Базовые станции Ubiquiti

Point-to-Multipoint линки (PtMP, «точка-многоточка») — это соединение трех или более устройств, расположенных в разных местах, с использованием 1 базовой станции (точка доступа) и нескольких CPE устройств (клиентских станций), которые соединены с точкой доступа беспроводным линком.

Базовые станции Ubiquiti

Производительность соединения точка-многоточка зависит как от базовой станции, так и от клиентских устройств. Таким образом, если вы хотите обеспечить передачу данных на большие расстояния, нужно выбрать правильную базовую станцию и правильное CPE для каждого конкретного случая.

Базовые станции обычно располагают на вершине башен, зданий или на антенной мачте. Высота установки определяет максимальное покрытие. При проектировании базовой станции оптимально выбирать WiFi антенны с как можно более узким сектором охвата. Ширина диаграммы направленности должна быть минимально возможной для покрытия желаемой площади. Антенны с большей шириной луча, покрывающие бОльшую зону и достигающие бОльшего количества станций, будут и более чувствительными к помехам, что приводит к снижению производительности и масштабируемости.

Базовая станция на 60 клиентов для малых расстояний

Идеально подходят для начинающих провайдеров в районах с низким уровнем помех.

Rocket M с OMNI всенаправленной антенной. Такая базовая станция WiFi потянет до 60+ одновременно работающих подключенных клиентов, если все устройства поддерживают airMAX. Очень чувствительна к помехам, рекомендуется только для сельской местности.

 

Базовые станции на 100, 200 и более клиентов с высокой производительностью

Rocket 5AC PRISM с антеннами airMax AC Sector. Это WiFi комплект операторского класса для базовых станций самой высокой производительности, с плотным расположением клиентов. К примеру, устанавливаем на 1 мачту восемь таких WiFi антенн (точка доступа + внешняя секторная антенна) с шириной луча 45° для кругового покрытия и получаем 800+ подключений на мачту. Устройства используют технологию airPRISM, что значительно уменьшает смежные шумы.

Rocket 5AC Lite и антенны Titanium Sector. Высокопроизводительное решение для областей средней плотности. Ширина диаграммы направленности антенн варьирует (60-120°) для масштабируемости. На одну систему из нескольких Rocket и WiFi антенн можно подключить 500+ клиентских станций. Использует новейшую технологию airMax AC.

 

Клиентские точки доступа (CPE) Ubiquiti

WiFi антенны до 3 км

NanoBeam 5AC-16. Недорогая WiFi антенна (точка доступа), малая дальность, преимущество — очень компактные габариты и стильный дизайн. Подходит клиентам, которым важна эстетика. 

NanoBeam 5AC-19: чуть большая дальность по сравнению с NanoBeam 5AC-16, большая направленность антенны.

 

WiFi антенны до 7 км

LiteBeam 5AC-23: недорогое CPE, узкий луч, поддержка MIMO. Рекомендуется Ubiquiti как новый отраслевой стандарт для клиентского оборудования с airMax AC.

PowerBeam 5AC-300/400: CPE с узким лучом, большая дальность и низкий уровень шума.

 

WiFi антенны для клиентов на дальние дистанции (свыше 7 км)

PowerBeam 5AC-500/620: Более высокая мощность устройств, высокая степень направленности антенны, большая дальность и низкий уровень шума, эстетичность.

Rocket 5AC-Lite/PTMP/PTP с антеннами RocketDish LW: Наиболее эффективный комплект оборудования WiFi, хотя его стоимость выше по сравнению с интегрированными конструкциями, и дизайн может показаться неказистым. Для лучшей изоляции сигнала на антенны можно дополнительно приобрести колпаки ISOBEAM. PTMP и PTP модели поддерживают новейшую airPRISM технологию для уменьшения помех от соседнего канала.

 


Важно: Устройства для дальних расстояний можно использовать и на короткие дистанции. К примеру, PowerBeam M, скорее всего, опередит Nanostation Loco M на малых дистанциях благодаря свойствам антенны.

Поэтому, если по параметрам вам подходит несколько антенн WiFi, всегда используйте более дальнобойную и мощную — так вы гарантированно получите стабильный линк с хорошей пропускной способностью.

Наше мнение

Нас немного удивило, что для мостов Ubiquiti не советует обычные (не стандарта 802.11ac) точки доступа Rocket M с антеннами RocketDish — частый выбор наших клиентов. Скорее всего, потому, что стандарт 802.11n считается уже неперспективным.

Кроме того, к базовым станциям на стандарте 802.11n мы рекомендуем также клиентские точки доступа Nanostation loco M5, M2 — до 1 км, Nanostation M5, M2  -до 5 км. Это очень популярные и недорогие решения. 


lantorg.com

Leave a Reply