Разное

Простой бп с регулировкой напряжения и тока – БЛОК ПИТАНИЯ С РЕГУЛИРОВКОЙ ТОКА И НАПРЯЖЕНИЯ

БЛОК ПИТАНИЯ С РЕГУЛИРОВКОЙ ТОКА И НАПРЯЖЕНИЯ

   Попалась в интернете недавно любопытная схемка простого, но довольно неплохого блока питания начального уровня, способного выдавать 0-24 В при ток до 5 ампер. В блоке питания предусмотрена защита, то есть ограничение максимального тока при перегрузке. В приложенном архиве есть печатная плата и документ, где приведено описание настройки данного блока, и ссылка на сайт автора. Прежде чем собирать, прочитайте внимательно описание.

Схема БП с регулировкой тока и напряжения

Схема БП с регулировкой тока и напряжения

   Изначально на фото печатной платы автора были ошибки, печатка была скопирована и доработана, ошибки устранены.

БЛОК ПИТАНИЯ С РЕГУЛИРОВКОЙ ТОКА И НАПРЯЖЕНИЯ - плата печатная

   Вот фото моего варианта БП, вид готовой платы, и можно посмотреть как примерно применить корпус от старого компьютерного ATX. Регулировка сделана 0-20 В 1,5 А. Конденсатор С4 под такой ток поставлен на 100 мкФ 35 В.

Самодельный БЛОК ПИТАНИЯ С РЕГУЛИРОВКОЙ ТОКА И НАПРЯЖЕНИЯ

   При коротком замыкании максимум ограниченного тока выдается и загорается светодиод, вывел резистор ограничителя на переднюю панель.

Индикатор для блока питания

   Провёл у себя ревизию, нашёл пару простеньких стрелочных головок М68501 для этого БП. Просидел пол дня над созданием экрана для него, но таки нарисовал его и точно настроил под требуемые выходные напряжения.

Индикатор для блока питания стрелочный

   Сопротивление используемой головки индикатора и применённый резистор указаны в прилагаемом файле на индикаторе. Выкладываю переднюю панель блока, если кому понадобится для переделки корпус от блока питания АТХ, проще будет переставить надписи и что-то добавить, чем создавать с нуля. Если потребуются другие напряжения, шкалу можно просто подкалибровать, это уже проще будет. Вот готовый вид регулируемого источника питания:

Делаем простой БП С РЕГУЛИРОВКОЙ ТОКА И НАПРЯЖЕНИЯ

   Плёнка — самоклейка типа «бамбук». Индикатор имеет подсветку зелёного цвета. Красный светодиод Attention указывает на включившуюся защиту от перегрузки.

БЛОК ПИТАНИЯ С РЕГУЛИРОВКОЙ ТОКА И НАПРЯЖЕНИЯ

Дополнения от BFG5000

   Максимальный ток ограничения можно сделать более 10 А. На кулер — кренка 12 вольт плюс температурный регулятор оборотов — с 40 градусов начинает увеличивать обороты. Ошибка схемы особо не влияет на работу, но судя по замерам при КЗ — появляется прирост проходящей мощности.

БП С РЕГУЛИРОВКОЙ ТОКА И НАПРЯЖЕНИЯ своими руками

   Силовой транзистор установил 2n3055, все остальное тоже зарубежные аналоги, кроме BC548 — поставил КТ3102. Получился действительно неубиваемый БП. Для новичков-радиолюбителей самое-то.

БП С РЕГУЛИРОВКОЙ ТОКА И НАПРЯЖЕНИЯ

   Выходной конденсатор поставлен на 100 мкФ, напряжение не скачет, регулировка плавная и без видимых задержек. Ставил из расчёта как указано автором: 100 мкф ёмкости на 1 А тока. Авторы: Igoran и BFG5000.

   Форум по БП

   Обсудить статью БЛОК ПИТАНИЯ С РЕГУЛИРОВКОЙ ТОКА И НАПРЯЖЕНИЯ


radioskot.ru

Блок питания с регулировкой напряжения и тока

Приветствую всех, особенно начинающих радиолюбителей, поскольку именно они очень часто сталкиваются с проблемой поиска источников питания для своих самоделок и поэтому в ходе этой статьи будет рассмотрен вариант постройки простейшего лабораторного блока питания с возможностью ограничения тока.
Блок питания с регулировкой напряжения и токаНаш блок питания может обеспечивать на выходе стабилизированное напряжения от ноля до пятнадцати вольт и ток до 1.5 Ампер, эти параметры можно изменять и походу поясню, как это сделать.snimok6

В проекте специально использованы наиболее доступные компоненты, чтобы ни у кого не возникло трудности с их поиском, а теперь давайте рассмотрим схему и поймём принцип её работы.

Схема состоит из трех основных частейsnimok3Сетевой понижающий трансформатор (красным обозначен), он обеспечивает нужные для наших целей выходные параметры, а также гальваническую развязку. В моем варианте был использован трансформатор от блока питания старого кассетного магнитофона,Блок питания с регулировкой напряжения и тока

подойдет и любой другой, основные параметры блока питания будут зависеть в первую очередь от трансформатора, притом нужно учитывать один момент — максимальное выходное напряжение лабораторного блока питания будет на несколько вольт меньше, чем напряжение на выпрямителе. snimok12Трансформатор подбирается с нужным током, в моем случае имеются две обмотки по 20 вольт, ток каждой из них составляет около 0,7 Ампер, обмотки подключены параллельно, то есть общий ток около полутора ампер.
Вторая часть из себя представляет выпрямитель, для выпрямления переменного напряжения в постоянку и конденсатор, для сглаживания напряжения после выпрямителя и фильтрации помех.

И наконец третий узел — это плата самого стабилизатора, давайте её рассмотрим поподробнее…

snimok13Уже постоянное напряжение поступает на плату стабилизатора, где стабилизируется до некоторого уровня. Режим стабилизации будет зависеть от стабилитрона, в нашем случае он на 15 Вольт, именно он задает максимальное выходное напряжение блока питания.
Беда в том, что ток у таких стабилитронов не велик, поэтому его нужно усилить с помощью простого каскада усиления по току, построенного на транзисторах VТ 1 и VТ 2, транзисторы подключены таким образом, чтобы обеспечить максимально большое усиление, то есть по сути это аналог составного транзистора.

snimok14

snimok15Регулятор напряжения в лице переменного резистора R1, выполняет функцию простого делителя напряжения и может быть рассмотрен, как 2 последовательно соединенных резистора с отводом от места их соединения.snimok16Изменяя сопротивление каждого из них, мы можем регулировать напряжение. Это напряжение усиливается ранее указанным каскадом.

snimok17Второй переменный резистор позволит ограничивать выходной ток. Если такая функция не нужна, то схема будет выглядеть следующим образом.

snimok18Теперь подробнее о компонентах, большую их часть, а если точнее все компоненты можно найти в старой аппаратуре, например в телевизорах, усилителях, приемниках, магнитолах и прочей технике.

Также возможно использовать импортные аналоги, которые имеют одинаковое расположение выводов. В архиве сможете найти некоторые варианты замены транзисторов, как на советские, так и на импортные.

Блок питания с регулировкой напряжения и тока

Можно использовать готовые мосты, которые можно найти в компьютерных блоках питания или же собрать мост из любых четырех аналогичных диодов с током от двух ампер.

Для увеличения выходного напряжения блока питания сначала нужно найти соответствующий трансформатор, затем заменить стабилитроны на более высоковольтные, скажем на 18 или 24 вольта, будет зависеть от нужного вам выходного напряжения.

snimok23Резистор ограничивает ток через стабилитрон, расчет производится исходя из напряжения выпрямителя. Рассчитываю так, чтобы ток через стабилитрон не превышал значение 20-25 миллиампер, в случае стабилитрона на пол ватта и 40-45 миллиампер в случае если стабилитрон одноваттный.

Если под рукой не оказалось нужного стабилитрона, то можно использовать несколько последовательно соединенных с меньшим напряжением, Блок питания с регулировкой напряжения и тока

в итоге сумма их напряжения будет равняться конечному напряжению стабилизации.
Схема стабилизатора работает в линейном режиме, поэтому силовой транзистор VT 2 нуждается в радиаторе.

А теперь давайте проверим конструкцию в работе

snimok25 и как видим напряжения плавно регулируется от нуля до пятнадцати вольт

snimok26

Теперь проверим функцию ограничения тока, обратите внимание без выходной нагрузки вращая регулятор тока, напряжение у нас не будет меняться, что свидетельствует о корректной работе функции ограничения.

Выходной ток также регулируется достаточно плавно, минимальная граница 180 миллиампер.

Максимальный выходной ток в моём случае, составляет около полутора ампер, этого вполне достаточно для средних нужд большинства радиолюбителей.snimok27Несмотря на простоту конструкции, при токах около одного Ампера, наблюдаем просадку выходного напряжения меньше 200 милливольт, это очень хороший показатель для стабилизаторов такого класса.

Введите электронную почту и получайте письма с новыми поделками.

Блок питания может переносить короткие замыкания с продолжительностью не более 5 секунд, в этом режиме ток ограничивается в районе одного — семи Ампер.

Монтаж при желании можно сделать навесным,snimok28но более красиво смотрится конструкция на печатной плате, тем более, что я ее для вас нарисовал,snimok29а файл платы также можете скачать с общим архивом проекта.

snimok8В качестве индикаторов советую использовать стрелочные приборы, snimok30чтобы не путаться с подключением, хотя можно и цифровые.

По мне, это довольно годный вариант в качестве первого блока питания, так что смело собирайте.

snimok4 Архив к статье: скачать…
Автор; АКА КАСЬЯН

xn--100—j4dau4ec0ao.xn--p1ai

Лабораторный блок питания с регулировкой по высокой стороне

Приветствую, Самоделкины!
В этой статье мы рассмотрим процесс самостоятельного изготовления регулируемого блока питания, но не с двумя степенями понижения, а с одной. Автором данной самоделки является Роман (YouTube канал «Open Frime TV»).

Практически все лабораторные блоки питания представляют из себя следующее:

Т.е. сначала установлен простой блок питания, который понижает сетевое напряжение до определенного уровня, а уже следом за ним установлен dc-dc преобразователь, который уже производит непосредственную регулировку тока и напряжения. Но почему бы не сделать регулировку прямо по высокой стороне? Такое решение позволит уменьшить размеры устройства и значительно увеличить КПД. Но с этим не все так просто. В процессе построения данной самоделки автор столкнулся с множеством проблем. И забегая вперед стоит отметить, что удалось побороть почти все возникшие проблемы, осталась лишь одна, хоть незначительная, но все-таки проблема. Однако обо всем по порядку.

Для данного проекта автор изготовил печатную плату методом ЛУТ, а это означает, что самостоятельно повторить проект сможет практически любой желающий. Итак, а теперь с самого начала. Сама идеи достаточно простая. Требовалось сделать достойный лабораторный блок питания с минимальным количеством деталей.

В результате в голове автора родилась незамысловатая схема и с первого взгляда вроде бы все должно работать. Для испытаний была нарисована и изготовлена печатная плата. Итак, блок стартовал, но при попытке уменьшить напряжение появлялся ужасный писк и происходил перегрев транзисторов.

Так как автору было не понятно почему такое происходит, поэтому он установил щуп осциллографа на затвор транзистора и увидел вот такую картину:

На поиск причины данной проблемы автор потратил почти месяц, но в конце концов нашел решение на просторах интернета. Проблема крылась в накопленной энергии трансформатора гальванической развязки. Решений было несколько. Тут можно дополнительно нагрузить обмотки ТГР, или сделать другую схему управления. Был выбран второй вариант. Схему подкинул участник форума радиолюбителей под ником «Телекот».


И после изготовления очередной платы все завелось.

Импульсы красивые, нагрев практически полностью отсутствует. Снаппер по первичке справляется отлично, хотя немного греется. И как уже говорилось выше появилась проблема, которую до конца побороть так и не удалось. Проблема заключается в следующем: присутствует писк на низком напряжении. Все дело в том, что когда на выходе установлено напряжение от 0,6 до 2,5В управляющим импульсам просто некуда уменьшаться и микросхема начинает их пропускать, следовательно, понижается частота и в результате мы начинаем слышать как работает блок.

По сути в этом нет ничего страшного, при таком заполнении насытиться сердечник вряд ли сможет. Но давайте все же попробуем решить данную проблему. Итак, какие тут возможны варианты? Самый простой способ — это установить резистор в нагрузку, но так как у нас же регулируемый блок питания, поэтому при напряжении в 30В может просто напросто перегореть.

Второе решение — уменьшить количество витков дросселя, таким образом он будет меньше накапливать энергии и, следовательно, импульсы должны возрасти.

Автор предпочел остановиться на втором варианте, но это так называемый «костыль». Есть еще один вариант решения данной проблемы и он гораздо лучше.

Решение это называется динамическая нагрузка, она позволяет задать один и тот же ток потребление при низком и высоком напряжении. Но автор решил в очередной раз не переделывать плату, поэтому в данном случае использовал второй вариант решения возникшей проблемы.
Конечная схема выглядит вот так:

Тут у нас в прямоугольнике дежурка, ее можете сделать любую.

Автор решил использовать дежурку из своего недавнего проекта, так как она простая и надежная.
На дежурке не будем задерживаться, давайте перейдём к основной схеме.

Как видите деталей здесь не так уж и много, а функционал полноценного блока питания. Принцип работы довольно прост. Дежурка дает питание для tl494, она начинает формировать импульсы, которые поступают на ТГР.

ТГР в свою очередь гальванически отвязывает низкую сторону от высокой. Импульсы с ТГРа поступают на затворы транзисторов в противофазе.

Ну а далее стандартная схема полумоста.


Как видите принцип работы довольно простой. Следующим шагом будет изготовление печатной платы.

На плате предусмотрено управление кулером по температуре, но можно переделать плату, и сделать так, чтобы кулер вращался постоянно, и сюда поставить динамическую нагрузку, это уже на ваш выбор.


Плата получилась вот такая:

Теперь ее необходимо запаять. Когда все элементы на своих местах, приступаем к намоточным работам. Начнем, пожалуй, с дросселей. Входной дроссель защищает сеть от шума, который издает непосредственно сам блок питания. Мотать его будем на ферритовом кольце проницаемостью 2000, диаметр кольца составляет 22мм. Мотаем 2 по 10 витков проводом 0,5мм.


Далее выходной дроссель. Вначале было намотано около 15 витков миллиметрового провода сложенного вдвое на кольце из порошкового железа, но в итоге их пришлось снизить до 7, в результате чего писк почти полностью пропал.


Следующим шагом изготовим ТГР. Для этого автор использовал вот такой каркас и Е-образный сердечник Е16, но с таким же успехом можно намотать и на кольце.

Сердечник изготовлен из феррита с проницаемостью 2000-2200. Производим необходимые расчеты при помощи программы Старичка.

Входное напряжение нам известно, а на выходе хотим получить 12-15В. Схему управления выбираем мост, так как к обмотке будет приложено все напряжение, а не половина как в полу мосте.
Для улучшения магнитной связи первичную обмотку необходимо разделить на две части. Половина в самом низу, а половина поверх вторичной обмотке.


Непосредственно вторичку мотаем в 2 провода рядом, это позволит избежать перекоса напряжений. Также одной из проблем в данном случае является фазировка. Необходимо четко распределить начало и конец обмоток в соответствии с точками на плате.

Теперь осталось намотать основной трансформатор. Изначально расчет был произведен на напряжение 36В, но писк был уже до 5В, поэтому пришлось перемотать трансформатор на 30В выходного напряжения плюс запас для стабилизации.

В намотке трансформатора нет ничего сложного. Так же делим первичку на две части, а вторичку между ними. При этом стараемся мотать виток к витку по возможности избегая нахлестов, таким образом мы повышаем добротность трансформатора. Не забываем при этом изолировать обмотки с помощью специальной ленты.

С намоткой покончено, запаиваем получившиеся изделия на плату и наш самодельный лабораторный блок питания полностью готов.

Теперь настало время тестов. Подключаем мультиметр к выводам блока питания и начинаем регулировать напряжение.



Как видим, с этим никаких проблем нет, все отлично. Теперь давайте подключим нагрузку. В качестве нагрузки выступит лампа накаливания на 36В мощностью 100Вт.

Как видите прогон по всему диапазону напряжений прошел успешно, блок справился на отлично. Теперь пробуем ограничить ток. Для этого необходимо вращать второй потенциометр и регулировка тока тоже работает исправно. Как было сказано выше в данном варианте платы установлен термоконтроль, давайте проверим его работу тоже. Для этого к плате подключаем кулер и начинаем нагревать наш термистор с помощью фена.

Как видим, при достижении определенной температуры кулер включается и начинает вращаться при этом происходит охлаждение платы. Подводя итоги можно сказать, что данный блок не идеален, и его лучше использовать как зарядку или питание для неприхотливых схем, хотя в целом получилось неплохо. Благодарю за внимание. До новых встреч!

Видеоролик автора:


Источник Доставка новых самоделок на почту

Получайте на почту подборку новых самоделок. Никакого спама, только полезные идеи!

*Заполняя форму вы соглашаетесь на обработку персональных данных

Становитесь автором сайта, публикуйте собственные статьи, описания самоделок с оплатой за текст. Подробнее здесь.

usamodelkina.ru

Блок регулирования напряжения и тока для простого лабораторного источника питания

Описание

В любой радиолюбительской мастерской не обойтись без источника питания с возможностью изменения величины напряжения в широких пределах. Представленное устройство предназначено для регулирования напряжения от полвольта почти до величины входного напряжения и регулирования величины ограничения тока нагрузки. При наличии готового нерегулируемого источника питания напряжением 20-30 В и допустимым током нагрузки до 5 А, этот блок позволит сделать источник универсальным.

Схема

За основу взята распространённая схема (рис.1), обсуждаемая на некоторых радиолюбительских форумах.

Рисунок 1. Вырезка из журнала Радио.

Честно говоря, стабилизированной эту схему назвать нельзя однозначно, но тем не менее я рекомендую её для начинающих радиолюбителей, нуждающихся в регулируемом источнике питания. Схема хороша тем, что позволяет регулировать напряжение в широких пределах, а также ограничивать ток нагрузки, что исключает перегрузку источника питания при коротких замыканиях.

У этой схемы есть один существенный недостаток. При регулировании напряжения, оно изменяется не равномерно. От минимума напряжение нарастает очень медленно, но ближе к максимуму процесс становится настолько стремительным, что точная установка требуемого значения весьма затруднительна. По этому поводу на многих форумах не мало соплей и плевков. Не советую уподобляться истерикам и размазывать сопли по этому поводу, всё, что требуется от настоящего радиолюбителя – включать мозг.

Суть проста. Чтобы получить линейный характер регулирования при нелинейном изменении величины регулирования линейным элементом, нужно скорректировать его характеристику в сторону обратной нелинейности… Вот такая не шуточная шутка получилась 🙂

Предлагаю Вам свой вариант схемы, в котором применена отечественная элементная база и добавлен элемент коррекции нелинейности регулировки напряжения – рисунок 2.

 
Рисунок 2. Схема блока регулирования напряжения и ограничения тока нагрузки.

Обратите внимание на подстроечный резистор R7. Его роль как раз и заключается в коррекции характеристики регулирования.

В качестве регулирующего элемента я применил транзистор КТ819ГМ (просто оказался в наличии). Он выполнен в массивном металлическом корпусе и рассчитан на ток коллектора до 15А. Этот транзистор необходимо размещать на радиаторе для эффективного теплоотвода.

В качестве шунта R2 я использовал параллельную спайку пяти двухваттных резисторов 5,1 Ом по 2 Вт каждый. Этот шунт я так же вынес за пределы платы, расположив рядом с радиатором транзистора.

У меня не оказалось переменного резистора 470 Ом, поэтому мне пришлось для R5 использовать резистор 1 кОм, но и при этом номинале ток регулируется достаточно равномерно.

Настройка схемы

Исходная схема (рисунок 1) практически не нуждается в настройке. Переработанная схема (рисунок 2) требует настройки коррекции характера регулирования напряжения. Настройка очень проста.

Подайте на вход напряжение питания (желательно от того источника, который будете брать за основу). Переменный резистор R6 выведите в крайнее положение, при котором напряжение выхода будет максимальным. Измерьте напряжение на выходе схемы. Переведите движок резистора R6 как Вам кажется точно в среднее положение. Подстроечным резистором R7 добейтесь на выходе схемы ровно половины того напряжения, которое измеряли при установке на максимум. Собственно – всё.

Данная коррекция не гарантирует абсолютную линейность регулировки, но визуально Вам покажется, что напряжение меняется идеально равномерно.

Применение

Плюс этой схемы заключается в ограничении максимального тока. Её можно использовать для сборки относительно бюджетного варианта источника питания. Для примера, я использовал в качестве преобразователя сетевого напряжения электронный трансформатор для галогенных ламп. У них есть серьёзный недостаток – отсутствие защиты от перегрузки. Но поскольку регулирующая схема ограничивает ток нагрузки, то практически защищает схему первичного преобразования от КЗ.

Файлы

Схема достаточно проста для повторения даже начинающими радиолюбителями, но, если кого интересует готовая печатка, качайте файл — Регулируемый БП 24 В 5 А

Кроме схемы и печатки в архиве содержится файл таблица с графиком, визуально отражающий изменение харауеристики равномерности регулирования при введении в схему корректирующего резистора, может кому то будет интересно, или даже полезно. Там в красных ячейках можно задавать величину сопротивлений переменного и корректирующего резистора. Изменение характеристики визуально можно наблюдать по представленным в файле графикам.

Предупреждение

Показанный в данной статье способ коррекции пригоден далеко не во всех случаях и может быть непреемлем для отдельного ряда задач!

ВНИМАНИЕ!!! Показанный способ коррекции следует использовать с особой осторожностью, зная принцип работы настраиваемого устройства и хорошо представляя, что Вы делаете! В других схемах при определённых положениях движка резисторов могут возникать недопустимые токи, способные вывести из строя резисторы или иные детали рабочего устройства!!! Используя описанный способ коррекции в своём устройстве вы действуете на свой страх и риск, а ещё лучше, представляете, что делаете. Ни какой ответственности за возможные причинённые неисправности Ваших устройств при применении корректирующего резистора по моей схеме лично я не несу.

Данный способ коррекции в конкретной представленной схеме на рисунке 2 абсолютно безопасен при любых номиналах корректирующего резистора и любых положениях движков корректирующего и переменного резисторов R7 и R6.

Пользуйтесь и наслаждайтесь творческим процессом 🙂

 

volt-info.ru

Линейный лабораторный блок питания своими руками

Приветствую, Самоделкины!
Если вы ищете схему простого и надежного линейного блока питания, то эта статья именно для вас. Тут вы найдете полную инструкцию по сборке, а также настройке данного блока питания. Автором данной самоделки является Роман (YouTube канал «Open Frime TV»).


Для начала немного предыстории. Совсем недавно автор переделывал свое рабочее место и в качестве третьего блока питания хотел установить именно линейный блок, так как иногда ему приходится собирать схемы, которые не переносят пульсации напряжения. А как нам известно, то у линейного блока на выходе, пульсация напряжения практически полностью отсутствует.


До этого момента линейные блоки автора не сильно интересовали, и он как-то особо не вникал в данную тему. Когда же пришла идея по построению такого блока, Роман сразу открыл всеми любимый и широко известный видеохостинг YouTube. В итоге после продолжительных поисков автор для себя смог выделить 2 схемы. Автором первой является AKA KASYAN (автор одноименного YouTube канала), а вторая схема построена на операционниках.


Но так как операционники могут работать на напряжении до 32В, то и выходное напряжение соответственно не могло превышать данного предела, а это значит эта схема отпадает.

Ладно, можно собрать схему от Касьяна, но и тут нас ждало разочарование. Данная схема боится статики. Это проявлялось взрывом транзисторов если взяться за выходные контакты.


Так было несколько раз. И тогда автор решил оставить данную схему в покое. Вы скажете, что в интернете полно схем линейных блоков питания.

Да, несомненно это так, но только эти две схемы упомянутые выше, имели нормально разведенные печатки, которое можно было просто скачать. Все остальное, либо без печаток, либо собрано навесным монтажом. А мы (радиолюбители) привыкли к тому, что все подается на блюдечке с голубой каёмочкой.

И вот когда все варианты иссякли, автор вспомнил, что года 3 тому назад он уже собирал линейный блок, который, кстати, к тому же отлично работал. Была найдена схема трехлетней давности.


Автор решил развести нормальную печатку. Плата получилось довольно компактной. После проведенного тестирования данной схемы, на удивление она отлично проявила себя.

При такой простоте автору это так понравилось, что он даже решил сделать kit-набор из данной платы. Для этого необходимо преобразовать печатку в Gerber файл (файл с расширением .gbr, представляющий собой проект печатной платы для последующего изготовления фотошаблонов на различном оборудовании). Затем необходимо отправить платы на изготовление.

И вот спустя пару недель после заказа получаем наши долгожданные платы. Вскрыв посылку и рассмотрев платы поближе, можем убедиться, что все очень качественно и красиво получилось.


Итак, давайте уже запаяем данную плату и проверим ее в работе. Компонентов для установки не так уж много, паять от силы минут 20, не больше.

Закончили с пайкой. Производим первое включение. И тут нас ждет небольшое разочарование. Данная плата не обошлась без косяков. Проявились они в том, что при вращении ручки потенциометра влево идёт увеличение напряжения и тока, а при правом вращении происходит уменьшение.


Так произошло потому, что резисторы для данной платы автор вынес на провода (для последующей установки на корпус) и там без проблем можно было поменять направление вращения просто поменяв боковые контакты. Ну ладно, зато все остальное работает как положено.


Но все же автор исправил печатку, теперь там при правом вращении потенциометра идёт увеличение напряжения, все как и должно быть. Так что можете смело скачивать и повторять данную конструкцию (архив с данной печатной платой находится в описании под оригинальным видеороликом автора, необходимо пройти по ссылке ИСТОЧНИК в конце статьи).

А теперь давайте перейдем к детальному рассмотрению схемы и непосредственно самой платы. Схему вы можете видеть на своих экранах.


Данный блок питания оснащен регулятором напряжения и тока, а также системой защиты от короткого замыкания, которая просто необходима в таких блоках.

Представьте себе на минуточку, что происходит при коротком замыкании, когда на входе напряжение 36В. Получается, что все напряжение рассеивается на силовом транзисторе, который конечно же такого издевательства вряд ли выдержит.


Защиту тут можно настроить. С помощью вот этого подстроечного резистора выставляем любой ток срабатывания.

Здесь установлена релюшка защиты на 12В, а входное напряжение может достигать 40В. Поэтому необходимо было получить напряжение 12В.


Это можно реализовать с помощью параметрического стабилизатора на транзисторе и стабилитроне. Стабилитрон на 13В, так как идет падение напряжения на переходах коллектор-эмиттер двух транзисторов.


Итак, теперь можно приступать к тестам данного линейного блока питания. Подаем напряжение в 40В от лабораторного блока питания. На нагрузку вешаем лампочку рассчитанную на напряжение 36В, мощностью 100Вт.

Затем начинаем потихоньку вращать переменный резистор.



Как видим регулировка напряжения работает отлично. Теперь давайте попробуем регулировать ток.

Как можно наблюдать, при вращении второго резистора ток уменьшается, а это значит, что схема работает в штатном режиме.
Так как это линейный блок и все «лишнее» напряжение превращается в тепло, ему нужен радиатор довольно таки больших размеров. Для этих целей отлично зарекомендовали себя радиаторы от процессора компьютера. Такие радиаторы имеют большую площадь рассеивания, а если их еще оснастить вентилятором, то можно в принципе полностью забыть про перегрев транзистора.

А теперь о том, как работает защита. Выставляем необходимый ток с помощью подстроечного резистора. При коротком замыкании срабатывает реле. Пара его контактов размыкает выходную цепь и транзистор находится в безопасности.

Для возвращения в нормальный режим работы предусмотрена вот такая кнопка на размыкание, при нажатии на которую снимается защита.

Ну или же можно просто отключить блок от сети и подать напряжение снова. Таким образом, защита тоже выключится. Также на плате имеются 2 светодиода. Один сигнализирует про работу блока, а второй про срабатывание защиты.


Подводя итоги можно сказать, что блок получился очень классным и подойдет как для новичков, так и для уже опытных радиолюбителей. Так что скачивайте архив и собирайте себе такой блок.

Ну а на этом все. Благодарю за внимание. До новых встреч!

Видео:


Источник Доставка новых самоделок на почту

Получайте на почту подборку новых самоделок. Никакого спама, только полезные идеи!

*Заполняя форму вы соглашаетесь на обработку персональных данных

Становитесь автором сайта, публикуйте собственные статьи, описания самоделок с оплатой за текст. Подробнее здесь.

usamodelkina.ru

Сборка блока питания с регулировкой тока/напряжения своими руками

Вот очередная версия лабораторного блока питания с напряжением от 0 до 30 В и регулировкой потребляемого тока 0-2 А, что всегда бывает полезно, когда используется БП для настройки самодельных схем или когда они неизвестные приборы запускаются в первый раз.

Схема ИП с регулировкой тока и напряжения

Сама схема питания — это популярный комплект из таких элементов:

  1. Сам регулируемый стабилизатор, в котором заменен T1 — BC337 на BD139, T2 — BD243 на BD911
  2. D1-D4 — диоды 1N4001 заменены на RL-207
  3. C1 — 1000 мкФ / 40 В заменен на 4700 мкФ / 50 В
  4. D6, D7 — 1N4148 на 1N4001

У используемого трансформатора есть напряжения: 25 В, 2 А и 12 В, которое полезно для управления вентилятором, охлаждающим радиатор и силовые диоды на панели. Для этого была создана небольшая плата с мостовым выпрямителем, фильтрующими конденсаторами и стабилизатором LM7812 (с радиатором).

Внутри корпуса лабораторного источника питания размещены трансформатор, плата самого регулируемого блока питания, платы стабилизаторов — 12 В и 24 В, радиатор с охлаждающим вентилятором (запускается при 50 С).

На передней части корпуса установлены выключатель, три светодиода, информирующих о состоянии блока питания (сеть 220 В, включение вентилятора и защита — ограничение тока или короткое замыкание), синие и красные LED дисплеи с наклеенной на них затемняющей пленкой. Рядом с дисплеями расположены регулирующие потенциометры, а справа выводы питания. На задней части корпуса имеется разъем для сети, предохранитель и охлаждающий вентилятор 60×60 мм.

Что касается индикаторных дисплеев, они показывают:

  • синий — текущее напряжение в вольтах V
  • красный — текущий ток в амперах A

Источник питания получился реально удобный и надёжный. Вся сборка заняла несколько дней. Что касается охлаждения, оно включается только при высокой нагрузке и то на короткое время, примерно на пару минут.

С этим БП удобно работать даже при слабом освещении, так как яркости индикаторов хватает с головой. Если хотите повысить ток до 3-4 ампера, выбирайте трансформатор по-мощнее и транзисторы регулятора, с хорошим запасам по току. Ещё пару неплохих схем источников питания смотрите по ссылкам:

2shemi.ru

Блок питания с регулировкой напряжения и тока своими руками

В этой статье вы узнаете как собрать очень полезные блок питания с регулировкой напряжения и тока своими руками. Все этапы сборки блока питания, а так же некоторые технические моменты, представлены в статье. Данный блок питания будет полезен как начинающим радиолюбителям, так и опытным, вы обязательно найдете где применить этот блок питания!

Сборка блока питания

Автор будет использовать блок питания от ноутбука, который выдает напряжение 15В и ток до 8А. Этого будет вполне достаточно.

 

К шнуру блока питания нужно припаять подходящий разъем, с помощью которого будет подсоединять блок питания к понижающий схеме.

 

В качестве понижающего преобразователя был выбран достаточно распространенный модуль, на котором можно изменять как напряжение, так и ток, с помощью вот этих вот 2-ух потенциометров.

 

Однако автор посчитал такие потенциометры не совсем удобными и поэтому решил заменить их на другие, так как скорее всего потребуется очень точная настройка напряжения. Было решено взять многооборотистый потенциометр, чтобы в дальнейшем облегчить себе задачу.

 

Настройку тока же будем производить обычным потенциометром, так как тут не нужна большая точность. Но в принципе, вам решать какие потенциометры использовать. Далее очень важный компонент — это вольтамперметр вместе с дисплеем, на котором будут отображаться значения. Для подключения разного рода нагрузок были выбраны банановые штекеры. 

 

Так же было решено, что брать 5В из порта USB тоже достаточно удобно, потому что таким образом можно запитывать, например, arduino. Поэтому давайте добавим еще один модуль.

 

Ну что ж, с компонентами разобрались, теперь давайте приступим к работе. Корпус будем изготавливать из фанеры толщиной 8 мм.

 

А так как у автора в наличие имеется 3d принтер, то он не смог удержаться и использовал его в этом проекте для печати лицевой панели. 3d принтер также использовался потому, что большинство отверстий передней панели абсолютно нестандартного размера, и найти сверла правильного диаметра почти невозможно, а без конца работать напильником тоже не хочется.

 

Далее следует деревообработка. Тут лучше воспользоваться циркулярной пилой (конечно если она у вас есть), а также можно использовать электролобзик.


Передняя панель печаталась примерно полтора часа. 


 

В итоге большинство отверстий оказались как раз по размеру, но к сожалению расстояние между отверстиями для банановых штекеров оказались не точными и автору пришлось немножко поработать дрелью. Далее необходимо склеить корпус.

 

Ну и пока клей сохнет, давайте посмотрим на схему подключения блока питания:

 

Итак, на вход мы получаем 15 В. Есть выключатель, с помощью которого мы включаем-выключаем схему, и когда он замкнут сразу же запитывается модуль с USB портом. На нем есть понижающий преобразователь, поэтому он запитывается напрямую. Также автор добавил предохранитель. Как только выключатель замыкается, то также запитывается и дисплей с вольтамперметром. Далее главная часть — это основной преобразователь.


 

Тут у нас конечно же 2 потенциометра, минусовой контакт от преобразователя подключается к дисплею как бы в разрыв цепи, и далее идет на минусовой контакт бананового штекера. Таким образом мы можем измерять ток. А плюсовой же контакт от преобразователя идёт напрямую к контакту бананового штекера, и параллельно к нему подсоединяется контакт от вольтамперметра. Таким образом, мы измеряем напряжение. И в общем то, все, согласитесь, очень просто. Сначала выпаиваем родные потенциометры.

 

Ну и теперь просто собираем все по схеме.

 

Итак, все собрано, первый тест.

 

Для первого теста автор решил подключить мотор.


 

Как видим, все очень хорошо заработало. Мы также видим, что вольтамперметр показывает какой ток потребляет мотор.


 

Настройка напряжения тоже отлично работает, но одна из особенностей этого dc-dc преобразователя, это возможность настроить еще и ток. Для этого нам нужно закоротить плюс и минус.

 

После этого мы можем с помощью нижнего потенциометра настроить ток.

 

Это очень полезная функция если мы хотим, например, зарядить аккумуляторы или протестировать мощный светодиод.


 

Ну вот и готов наш блок питания, получилось достаточно симпатично, а главное в деле пригодится обязательно! Спасибо за внимание, делитесь статьёй в соц весях, если понравилось )

Видео самоделки:

 

Похожее

kavmaster.ru

Leave a Reply