Схемы

Power bank схема принципиальная – Powerbank + зарядное устройство под 4 аккумулятора формфактора 18650. Обзоры. Обзоры товаров из Китая. Разборка блока питания, внешние и внутренние обзоры, схемы блока питания, технические характеристики, тесты блоков питания и испытания

Содержание

Сделайте мощный самодельный повербанк

Использован материал с канала блогера Ака Касьяна. Смартфон – девайс, который стал для всех людей незаменимым устройством для общения. Их используют для выхода в интернет и часто на долгое время. Но у смарфтонов есть один недостаток – это время автономной работы. В лучшем случае аккумулятор будет работать без подзарядки в течение одного дня, а если активно им пользоваться, то несколько часов. В этой статье и прилагаемом видео показано, как изготовить мощный самодельный Powerbank, который может заряжать даже одновременно для смартфона или планшета или их сочетания.

Купить радионяню, о которой рассказано в начале ролика, и все комплектующие повербанка можно в этом китайском магазине. О том, как получать кэшбэк (возврат стоимости)в размере 7% от цены всех покупок есть на нашем сайте статья. Скачать схему, плату и другие файлы проекта здесь.

Почему выгодно сделать повербанк самому?

Для того, чтобы улучшить параметры работы аккумуляторных батарей мобильного телефона, были заказаны портативные зарядные устройства, которые носят простонародное название повербанк. Но в единичном виде такое устройство даже наполовину не способно зарядить аккумулятор телефона. И даже три таких устройства не дают выход из ситуации. Покупка мощного пауэрбанка – довольно дорогое удовольствие. Нормальный powerbank, скажем, с емкостью 10000 миллиампер стоит 25-30 долларов. Учитывая это и долгое время ожидания посылки, проще сделать свой вариант.

Описание схемы повербанка

Схема powerbank состоит из трех основных частей. Это контроллер заряда литиевых аккумуляторов с функцией авто-отключения при полной зарядке; отсек батарей с параллельно соединенными литий-ионными аккумуляторами стандарта 18650; выключатель питания на 5-10 ампер от компьютерного блока питания; повышающий преобразователь, для того чтобы повышать напряжение с аккумулятора до желаемых значений в 5 вольт, которые нужны для зарядки телефона или планшета; юсб-разъем, к которому подключается заряжаемое устройство.

Кроме простоты и дешевизны, представленная схема высокие значения выходного тока, который может доходить до 4 ампер и зависит от номинала таких компонентов, как полевой транзистор, диод Шоттки на выходе и индуктивность. Китайские аналоги способны обеспечивать выходной ток не более 2,1 ампер. Этого достаточно для того, чтобы зарядить одновременно пару смартфонов, а наш пауэрбанк может справиться с 4-5 смартфонами.

1

Рассмотрим отдельные узлы конструкции. В качестве источника питания 5 параллельно соединенных аккумуляторов стандарта 18650 от ноутбука. Емкость каждого аккумулятора 2600 миллиампер в час. Использован корпус от адаптера или инвертора, но можно использовать другой подходящий корпус. В качестве контроллера для заряда будем использовать плату для заряда, купленную тут. Ток заряда порядка 1 ампера. Инвертор, который будет повышать напряжение от аккумулятора до нужных 5 вольт, можно взять также готовый. Он стоит очень дешево. Максимальный выходной ток до 2 ампер.

Сборка схемы

На первом этапе фиксируем аккумуляторы, скрепляем друг с другом с помощью клеевого пистолета. Далее нужно подключить к аккумуляторной батарее контроллер, чтобы проверить как происходит процесс заряда. Нужно также узнать время заряда батареи и понять работает ли авто-отключение при полной зарядке. На плате все детально подписано.

Заряжать можно от любого юсб порта. Индикатор должен показать, что идет зарядка.  Через 5 часов загорелся второй индикатор, что означает, что процесс заряда завершен. Если используется металлический корпус, следует дополнительно изолировать батарейки с помощью широкого скотча.

Одним из основных узлов схемы является повышающий dc-dc конвертор, инвертор – преобразователь напряжения. Он предназначен для того, чтобы поднимать напряжение с аккумуляторов до 5 Вольт, нужные для заряда телефона. Напряжение одного аккумулятора составляет 3,7 вольт. Здесь они соединены параллельно, поэтому инвертор необходим.

Система построена на таймере 555 – полевой транзистор и стабилизация выходного напряжения, который задается с помощью стабилитрона vd2. Стабилитрон, возможно придется подобрать. Подойдет любой маломощный стабилитрон.  Резисторы на 0,25 или даже 0,125 ватт. Дроссель L1 можно вынуть из компьютерного блока питания. Диаметр провода не менее 0,8, лучше всего сделать 1 миллиметр. Количество витков 10-15.

В цепи собран частотозадающий узел, который задает рабочую частоту таймера. Последний подключен в качестве генератора прямоугольных импульсов. С таким подбором компонентов рабочая частота таймера около 48-50 кГц. Затворный ограничительный резистор R3 для полевого транзистора 4,7 Ом. Сопротивление может быть от 1 до 10 Ом. Можно этот резистор заменить перемычкой. Полевой транзистор любой средней мощности с током 7 ампер. Подойдут полевики от материнских плат. Небольшой транзистор обратной проводимости vt1. Подойдет kt315 или другой маломощный транзистор обратной проводимости. Диод выпрямительный – желательно использовать диод Шоттки с минимальным падением напряжения на переходе. Две емкости стоят в качестве фильтра питания.

Данный  инвертор импульсный, он обеспечивает высокий КПД, высокую стабилизацию выходного напряжения, не нагревается в ходе работы. Поэтому силовые компоненты устанавливать на теплоотвод не нужно. Если будут затруднения с диодами Шоттки, то можно использовать диоды, которые стоят в компьютерных блоках питания. Сдвоенные диоды to-220 встречаются в них.

На фото ниже инвертор в собранном состоянии.

2

Можно сделать печатную плату. В описании есть ссылка.

Тестирование инвертора на 5 вольт

Проверяем инвертор на работоспособность. Заряжается смартфон, как видно, идет процесс заряда. Выходное напряжение держится на уровне 5,3 вольта, что полностью соответствует нормативам. Инвертор при этом не нагревается.

Окончательная сборка в корпус

Из куска пластика нам нужно вырезать боковые стенки. На контроллере заряда два светодиодных индикатора, которые показывают процент заряда. Их нужно заменить более яркими и вывести на переднюю панель. В боковой стенке вырезаны два отверстия под микро юсби разъемы, то есть одновременно можно заряжать два устройства. Также есть отверстия для светодиодов. Отверстие для контроллера, то есть для зарядки встроенных акб. Будет сделано также небольшое отверстие под выключатель питания.

мощный самодельный повербанк

Все разъемы, светодиоды и выключатель фиксируются с помощью клеевого пистолета. Осталось все запаковать в корпус.

мощный самодельный повербанк

На выход устройства подключен USB-тестер. Видно, что на выходе твердо держится напряжение 5 вольт. Подключим мобильные телефоны и попробуем зарядить их с самодельного Power банка. Будут заряжаться сразу два смартфона. Ток заряда скачет до 1,2 Ампера, напряжение тоже в норме. Идет успешно процесс заряда. Инвертор работает безотказно. Получилось компактно и, главное, стабильно. Схема проста в сборке, использованы всем знакомые комплектующие.

izobreteniya.net

САМОДЕЛЬНЫЙ POWER BANK С СОЛНЕЧНОЙ БАТАРЕЕЙ

Солнечная энергия является абсолютно бесплатным (пока 🙂 ), широко доступным и экологически чистым видом энергии. Многие знакомы с так называемыми фотоэлектрическими преобразователями, или солнечными панелями. Их ячейки изготавливаются из специальных полупроводниковых материалов, и когда солнечный свет попадает в них, он выбивает электроны, заставляя их отделяться от своих атомов. Когда электроны проходят сквозь клетку, они генерируют электричество.

Power Bank — практика

В общем с краткой теорией закончили. А теперь будем делать мощный и качественный Повербанк, который собирает и накапливает энергию с помощью солнечных панелей, как это происходит в предыдущим проекте. Электричество, получаемое от этих панелей, хранится в Li-Po батарее. Затем аккумуляторная батарея используется для формирования нужного питания — стабилизированных 5 В, которое используется в USB-гаджетах, чаще всего смартфонах. Power Bank также может заряжаться от внешнего источника 5 В от сетевого адаптера на 220 В. На улице он самостоятельно заряжается с помощью солнечного света — как и задумано.

Схема принципиальная

САМОДЕЛЬНЫЙ POWER BANK С СОЛНЕЧНОЙ БАТАРЕЕЙ - СХЕМА

Сохраните схему чтоб увеличить

Печатная плата в архиве. Схема Повербанка на солнечных элементах состоит из двух частей. Первая — это зарядное устройство на основе MCP73831 и вторая — повышающий преобразователь на LT1302-5, который преобразует напряжение литиевого аккумулятора в 5 В.

САМОДЕЛЬНЫЙ POWER BANK С СОЛНЕЧНОЙ БАТАРЕЕЙ - СХЕМА

MCP73831 — это миниатюрный контроллер заряда литий-ионных или литий-полимерных АКБ. Поскольку диапазон входного напряжения составляет 3,7 — 6 В, любое значение между этими величинами может быть использовано в качестве источника входного вольтажа. Дополнительный 5 В вход мини USB также включен в схему, чтоб зарядить Повер-банк от сети 220 В через адаптер, когда солнечного света недостаточно. Контроллер будет заряжать аккумулятор до 4.2 V в полностью безопасном режиме. Светодиод на контроллере горит в течение всего процесса заряда.

САМОДЕЛЬНЫЙ POWER BANK С СОЛНЕЧНОЙ БАТАРЕЕЙ - СХЕМА

Второй каскад — повышающий преобразователь, который преобразует напряжение аккумулятора 4 В в 5 В. Он основан на микросхеме LT1302-5 — DC/DC преобразователь на фиксированное напряжение выхода 5 В. Входное напряжение LT1302-5 может быть ниже 2,2 В.

САМОДЕЛЬНЫЙ POWER BANK С СОЛНЕЧНОЙ БАТАРЕЕЙ - СХЕМА

Солнечные панели, используемые в проекте, рассчитаны на 6 В и 150 мА, что обеспечивают около 1 Вт/ч в идеальных условиях. А литий-полимерная батарея тут стоит мощностью 3,7 В И 4000 мА, которая сможет дать около 15 Вт/ч. Учтите, что зарядка будет длиться гораздо больше, чем 15 часов, так как эффективность хранения и повышающего преобразования будет меньше, чем 100%. Но поскольку солнечная энергия является бесплатной — спешить некуда.

el-shema.ru

Powerbank со всевозможной индикацией


Привет, Самоделкины!
Сегодня покажу вам как я собрал powerbank с индикацией on/off, процесса зарядки и уровнем заряда li-ion батареи.

Как известно практически все продаваемые в offline и online магазинах powerbank’и не имеют кнопки включения/отключения. Включаются они, как правило, при подключении потребителя, а отключаются при удалении его из usb разъема. Но если подключаемое к повербанку устройство потребляет незначительное количество энергии, то повербанк либо его «не видит», либо включает питание на не продолжительное время, после чего отключается. Вследствие такого принципа работы этих портативных зарядных устройств невозможно использовать их в качестве питания usb гаджетов с небольшим потреблением тока. Совсем недавно у меня (благодаря всем известному китайскому интернет магазину) появился такой usb гаджет — стерео Bluetooth аудио адаптер. Внешний вид которого представлен на фото.


Питается он от 5 вольт, в работе потребляет ток порядка 5-10 мА, повербанки не распознают такую нагрузку и просто не включаются. Судя по отзывам интернет магазина, такой гаджет приобретается в основном автомобилистами для подключения к автомагнитоле, не имеющей технологии Bluetooth, в таком случае питание берется от usb разъема магнитолы. Я же планирую использовать его дома, подключив к колонкам через aux. Для того чтобы не было лишних проводов (в том числе и для питания Bluetooth адаптера) было принято решение собрать powerbank специально для этого устройства.

Инструменты и материалы:
1. Li-ion батарея
2. Пластиковая коробка (будущий корпус повербанка)
3. Dc-dc step up (повышающий преобразователь напряжения)
4. Контроллер заряда/разряда li-ion аккумулятора
5. Мини выключатель
6. Usb разъем
7. Микрокнопка
8. Светодиодный индикатор уровня заряда
9. Провода
10. Мультиметр
11. Паяльник
12. Припой
13. Канифоль
14. Бокорезы
15. Ножницы
16. Горячий клей
17. Нож макетный
18. Плоскогубцы

Начнем с подбора корпуса для будущей самоделки. Я перебрал множество вариантов. Думал сделать корпус не стандартный, а, например, из фанеры или дерева. Но попробовав распилить кусок фанеры в комнате, получил кучу пыли и мусора. Идея деревянного корпуса показалась мне тоже трудно осуществимой в квартирных условиях. Тогда мне на глаза попалась квадратная пластиковая коробочка без одной стенки. По-моему когда-то это был картридер ( card reader) от стационарного компьютера. На одной из сторон коробки остался логотип фирмы Acorp.

С корпусом я определился. По размерам он оказался достаточно вместителен. Внутрь с легкостью помещается 3 банки 18650 li-ion от аккумулятора старого ноутбука. Но после их заряда оказалось, что за долгое время работы в ноутбуке, ни одна из 6-ти проверенных мной банок не держала заряд (они саморазряжались). Было решено использовать другую литиевую батарею. Донором стала электронная книга. У нее не работал экран (был разбит), но я помню, что она довольно-таки долга держала заряд (порядка 8 часов включенного экрана). Заявленная производителем емкость 2700 mah. Размеры аккумулятора приличные, но в новообретенный корпус он поместился.


Причем аккумулятор довольно тонкий и я закрепил его на одной стороне коробки.
На другой половине разместятся остальные компоненты электроники.
Сбоку врезал микро выключатель.

Посередине была выемка и в нее идеально вписался разъем micro usb на плате, через него будет подключаться зарядное устройство.

Слева я решил вставить модуль индикатора уровня заряда аккумулятора.



Модуль компактным не назовешь, учитывайте это если решите использовать такой в самоделках.


На Али встречались несколько разновидностей подобных индикаторов для 3,7 Li-ion батарей, этот самый крупный из них.
Даже в таком вроде не маленьком корпусе у меня возникли трудности с размещением данного модуля. Пришлось немного подпилить плату.

Далее я наметил расположение плат (заряда/разряда, dc-dc повышающего преобразователя) и usb порта. Сначала вырезал отверстие для usb разъема. Хотя на плате dc-dc преобразователя имеется свой usb порт, но припаян он как-то криво и по длине плата не умещалась если в корпусе ее разместить вверх разъемом. Поэтому я использовал отдельный usb разъем.

На платах контроллера заряда и dc-dc преобразователя имеется светодиодная индикация. Сквозь корпус ее не было видно, поэтому я проделал в корпусе 2 небольших круглых отверстия. Еще одно отверстие большего диаметра сделал под кнопку для включения индикации уровня заряда.

Затем поставил usb порт в заранее подготовленное отверстие и зафиксировал горячим клеем. Таким же образом установил и зафиксировал клеевым пистолетом кнопку, которая будет включать индикацию уровня оставшегося заряда повербанка.


Все тем же горячим клеем, но уже на боковую панель, фиксируется модуль индикатора оставшегося количества заряда.

Затем ножиком убрал излишки застывшего клея.

Далее следует пайка. Подготавливаем паяльные принадлежности (канифоль/флюс, припой).

Пока греется паяльник, отмеряем и отрезаем провода необходимой длины. Я использовал проводник из меди с достаточно большим сечением, так как ток заряда аккумулятора порядка 1 ампер. Ток разряда в данном случае будет не большой. Dc-dc преобразователь, по заявлением китайского продавца, на выходе способен выдавать ток до 0,6 А, при этом поддерживать постоянное напряжение 5 вольт. Практика показала, что реальные максимальные показатели данного преобразователя напряжения составляют 0,5 А, при этом напряжение на выходе проседает до 4,2-4,4 вольт и вся схема ощутимо нагревается. При меньших нагрузках работает стабильно. В начале статьи я подробно рассказал для каких целей я собираю этот девайс, поэтому в моем случае такой dc-dc преобразователь подойдет вполне. Если хотите, чтобы повербанком можно было заряжать гаджеты, такие как телефоны, смартфоны, часы и т.д., используйте другой повышающий преобразователь, например, mt3608. По заверениям продавца он может выдавать ток до 2А, к тому же на Mt3608 есть возможность регулировки напряжения.
Затем необходимо зачистить провода от изоляции и залудить.

Вначале припаял провода к контактам аккумуляторной батареи.

Залил места спайки горячим клеем для надежности, чтобы во время дальнейших манипуляций все осталось на своих местах.

Потом решил припаять провода к модулю индикации заряда. Было не очень удобно, так как модуль я уже смонтировал на боковую панель корпуса и добротно полил термоклеем.

Далее минусовой провод (белый) припаял к минусу батареи (на плате контроллера заряда), а красный (плюс) в разрыв через кнопку припаял к плюсу батареи (так же на плате контроллера).

Выход платы контроллера заряда out+ соединил с входом контроллера dc-dc преобразователя in+. Минусовой вывод out- соединил с минусовым входом повышающего преобразователя in+ через микро выключатель. На следующих фото этот процесс более наглядно и подробно.


Также припаял 2 провода, соединив micro usb вход и схему контроллера зарядки.

Лишнее удалил.

Проверка. Все работает, индикатор светится красным, цепь собрана верно.


Разместил компоненты цепи на внутренней стороне корпуса так, чтобы светодиодные индикаторы были видны в подготовленных специально для этого круглых отверстиях в пластике и зафиксировал все клеем используя термо пистолет.

Отверстия залил клеем. Он прозрачный и через него свет индикаторов рассеиваясь будет отлично виден.

Затем когда клей застыл излишки можно удалить.
Финальный этап. Закрываю корпус используя отвертку и пару саморезов.


На открытую стенку коробки по периметру нанес быстросохнущий супер клей. Вырезал из тонкого пластика подходящий кусок и приклеил.


Вот что получилось:

И собственно с виновником сего творения — bluetooth адаптером.


Спасибо! До новых встреч! Доставка новых самоделок на почту

Получайте на почту подборку новых самоделок. Никакого спама, только полезные идеи!

*Заполняя форму вы соглашаетесь на обработку персональных данных

Становитесь автором сайта, публикуйте собственные статьи, описания самоделок с оплатой за текст. Подробнее здесь.

usamodelkina.ru

Как самому сделать ПоверБанк | 2 Схемы

Давно было желание построить свой большой, мощный повер-банк, которой можно было бы нагружать всякими устройствами с питанием от USB. Powerbank должен иметь возможность зарядки от возобновляемого источника энергии — здесь используется солнце. Индикатор режимов работы и состояния батареи также является необходимым.

Что удалось получить:

  1. Аккумулятор накопливает мощность примерно 150Wh, 12×18650 в конфигурации 3S4P, 11.1 V 14000mAh.
  2. Два порта USB 5.2 V с током примерно 3 А.
  3. Преобразователь сделан на микросхеме LM2596-5. Слегка поднято напряжение до 5,2 вольта для компенсации просадки и надёжного старта.
  4. Зарядка АКБ идёт от солнца. Этим занимается специализированный контроллер MPPT LT3652. Плата преобразователей step-up и MPPT приклеены теплопроводящим клеем для алюминиевых пластин, для улучшения теплоотдачи.
  5. Аккумулятор защищен BMS-em с функцией балансира. BMS позволяет держать ток 25 А.

Измерительная система на Atmega328, которая работает совместно с датчиком тока INA219 и выводит результаты измерения на дисплей oled с драйвером SSD1306. Atmega считывает значение тока, потребляемого из блока и напряжение на нем через датчик INA219. Напряжение с преобразователя step-up и step-down считывает датчик самого контроллера. МК использует внешнее опорное напряжение от MAX6129. Питание стабилизирует MCP1700.

Схема принципиальная Powerbank

Теперь о корпусе

Корпус приобретен готовый из пластика. На нижнюю часть корпуса крепится двухсторонним скотчем весь пакет батарей. Сам пакет закреплён специальными стяжками, специально для этого предназначенными. Подробности видно на фотографиях.

Разъемы зарядки и панели солнечных батарей — XT60, закрепленные в держателях, напечатанных на 3D-принтере. Рамка дисплея сделана так же.

Выключатель питания отключает преобразователи и схемы измерения от блока АКБ.
В отсутствии от солнца powerbank заряжается обычным сетевым зарядным устройством.

2shemi.ru

Power bank на транзисторах



Всем привет ребята) будем собирать повер банк можно сказать из хлама) детали эти есть в закромах практически у каждого радиолюбителя! Схема эта от ака касьяна, понравилась простотой. Будем ее повторять и тестить)

А вот и наша схема


выполнена она на мультивибраторе, транзисторы можно применить хоть кт 315. И силовой составной кт 829. Напряжение тут стабилизированное!

Протравливаем плату


Запаиваем все мелкие радиодетали, т.е. с начала резисторы! 2 керамических конденсатора. 3 транзистора серии 2n5551
Стабилитрон на 5.1В, 2 быстродействующих диода. Силовой транзистор и дросселек намотанный на гантельке. Можно так же применить кольцо из порошкового железа! Количество витков 25 диаметром 0.5-0.8.

Проверяем его холостой ток, у меня получилось 40-50 мА — это конечно очень много.

Замеряем выходное напряжение, получаем на выходе 5.5 В на холостом ходу.

Ну и давайте его помучаем лампой накаливания, она у меня на 24 В, но это не важно. Смотрим на просадку напряжения, и она получается 250 мВ. И ток потребления почти 1.5А.

Ну и напоследок давайте попробуем подключить к телефону! И как мы видим телефон начал заряжаться)

При этом есть ощутимый нагрев силового транзистора, поэтому его нужно посадить на радиатор в виде алюминиевой пластины. В дальнейшем вставим его в какой нибудь корпус, доведем его до ума!

Ссылка на архив с печатной платой

Доставка новых самоделок на почту

Получайте на почту подборку новых самоделок. Никакого спама, только полезные идеи!

*Заполняя форму вы соглашаетесь на обработку персональных данных

usamodelkina.ru

Powerbank + зарядное устройство под 4 аккумулятора формфактора 18650. Обзоры. Обзоры товаров из Китая. Разборка блока питания, внешние и внутренние обзоры, схемы блока питания, технические характеристики, тесты блоков питания и испытания

По большому счету это устройство присутствует на рынке довольно длительное время, но в данном случае оно продается под брендом Tlife.
Существует четыре версии устройства, черного и белого цвета, а также с аккумуляторами в комплекте и без оных.
Ко мне попал вариант без аккумуляторов, так как у магазина есть некоторые сложности с пересылкой аккумуляторов.

Заявленные характеристики:
Возможность замены батарей
ЖК дисплей
Микроконтроллерное управление
Защита от перезаряда
Защита от короткого замыкания

Емкость — 53.3Втч
Вход — 5 Вольт 1 Ампер
Выход — 5 Вольт 1 Ампер и 2 Ампера
Саморазряд — 2мАч в сутки.

В комплект входит:
1. Powerbank Tlife
2. USB-microUSB кабель
3. Инструкция

Инструкция хоть и на английском, но очень подробная. Хотя как по мне, то с таким устройством можно разобраться и интуитивно.

USB-microUSB кабель короткий, около 30см. Информационные линии отсутствуют, т.е. кабель работает только на заряд. Разъемы вставляются очень плотно.

Выше я писал, что есть два цветовых решения корпуса, я выбрал белый.
Размеры 130х83х25мм. На мой взгляд весьма габаритное устройство.

Снизу также указано название магазина Tmart, так как эти устройства продаются под их торговой маркой.

Пустой корпус довольно легкий, 116 грамм, с аккумуляторами будет около 300 грамм (4 аккумулятора х 45грамм).

Спереди расположен дисплей, причем матричный, что весьма неожиданно. Обычно на экране просто заранее подготовленные пиктограммы. Подозреваю, что данный дисплей добавил свою ощутимую долю в цену устройства.
Сзади разъемы и кнопка включения.
1. Кнопка включения. Вообще устройство умеет включаться автоматически при подключении нагрузки, но иногда нагрузка не может сразу "подхватить" ток заряда, потому кнопка может оказаться не лишней, как минимум одно устройство у меня требовало нажатия на эту кнопку.
2. Выходы 2 Ампера и 1 Ампер, в части разборки будет понятно, чем они отличаются.
3. Вход microUSB для заряда самого Повербанка.

Верхняя крышка сдвигается назад, открывая доступ к аккумуляторному отсеку, фиксация крышки в обоих положениях уверенная.

Плюсовые клеммы немного утоплены внутрь корпуса, но нормальный контакт есть даже у аккумуляторов с плоским плюсовым контактом, собственно такие аккумуляторы и учавствовали при тесте.
Минусовой контакт выполнен в виде пружин, что является одновременно плюсом и минусом.
Плюс в том, что пружины обеспечивают прижим с аккумуляторами разной длины (с защитой и без защиты).
А минус в большом сопротивлении этих пружин, позже я измерю этот параметр.
Держат пружины хорошо, в процессе теста Повербанк у меня часто был "вверх ногами", ни разу аккумуляторы даже не попробовали вывалиться.

В тесте я использовал аккумуляторы Sony VTC4, которые участвовали в моем обзоре аккумуляторов.

Немного о режимах работы и индикации.
1. При включении (хоть кнопкой, хоть автоматически) отображается надпись — Power-on
2. В режиме заряда есть анимация процесса заряда, но привязки у напряжению или проценту заряда нет, анимация есть — аккумуляторы заряжаются, анимации нет, аккумуляторы заряжены. Но анимация индивидуальна для каждого аккумулятора.
3. Без нагрузки отображается уровень заряда аккумуляторов.
4. Здесь отображение уровня индивидуально для каждого аккумулятора. Хотя с условием что аккумуляторы по сути включены параллельно, то целесообразность такого решения сомнительна. Если вынуть какой нибудь из аккумуляторов, то в соответствующем месте пиктограмма будет отсутствовать.
5. В процессе питания подключенных устройств отображается анимация подключенного разъема, а также ток заряда. Периодически на короткое время отображается уровень заряда аккумуляторов. Дисплей по умолчанию включен постоянно, при коротком нажатии на кнопку включения можно отключить подсветку.
Так как Повербанк имеет функцию автоматического включения, а также автоматического отключения, то я проверил как он ведет себя с маломощными нагрузками. В моем случае при токе заряда в 0.05 Ампера все работало, но при более низком токе заряда устройство отключится, т.е. заряжать очень маломощные устройства будет тяжело, отключение может произойти раньше чем будет достигнут 100% заряд.

Переходим к тестам и прочим экспериментам.
Сначала покажу соответствие отображаемого тока заряда и реального.
При помощи электронной нагрузки я проверил устройство в диапазоне токов 0.5-2.5 Ампера с интервалом в 0.5 Ампера.
Как можно увидеть на фото, измеритель завышает показания.

Выходное напряжение под максимальным током нагрузки просело до 4.92 Вольта, хотя на индикаторе Повербанка оно было в диапазоне 5.06-5.05 Вольта. Данный эффект обусловлен схемотехникой устройства, но в любом случае что 5.06, что 4.92 находятся в допустимом диапазоне 4.75-5.25 Вольта.

При токе нагрузки более 2 Ампер срабатывает защита от перегрузки и выход Повербанка отключается. Происходит это очень быстро, нагрузка даже не успела это засечь, но из-за инерционности дисплея Повербанка удалось сфотографировать ток перед отключением.

Несколько тестов из ситуаций приближенных к реальным и сила тока в зависимости от подключенного выхода.
1, 2. Смартфон. Здесь я допустил небольшую ошибку, так как заряжал "полным" кабелем, с комплектным ток был одинаков. Это произошло из-за того, что с полным кабелем зарядное телефона снижало само ток заряда. Причем при подключении остальных нагрузок этот эффект не проявлялся.
3,4. Планшет PIPO, в обоих вариантах ток был около 0.9 Ампера, от родного зарядного ток около 1.8-2 Ампера.
5,6. Планшет CUBE (андроид), Данный планшет может без проблем брать от зарядного ток 2 Ампера, но в первом разъеме (1 А) ток был превышен, а во втором (2 А) ограничен на уровне 0.5 Ампера самим планшетом.

1, 2. Мощный планшет Teclast. В данном случае планшет был полностью разряжен и Повербанк уходил в защиту при подключении к любому гнезду. Думаю многим знакома ситуация, когда полностью разряженный планшет после подключения к зарядному пытается включить экран и затем начинает циклически отключаться. Здесь происходило примерно то же самое, но отключался сам Повербанк.
3,4. Но если оставить так на длительное время, то планшету надоедало отключаться и он начинал заряжаться током в 0.45 Ампера. Примерно через несколько минут заряда в таком режиме я переключил его во второй разъем (2 А) и дальше заряд пошел нормально, ток 2.24 Ампера.
Кстати, разъемы очень легко запомнить, первый — ток 1 Ампер, второй — 2 Ампера, т.е. 1-1, 2-2.
5,6. Более современный смартфон, который может заряжаться током до 2 Ампер. В первом случае срабатывает защита, во втором ток заряда всего 0.91 Ампера. Здесь я не мог подключить кабель который шел в комплекте к Повербанку, так как смартфон имеет разъем USB-C и заряжается через собственный кабель. Я думаю, что при использовании обычного (не информационного) кабеля, во втором разъеме ток заряда будет 2 Ампера.

С первым этапом тестов закончили, переходим к разборке и анализу внутренностей.
Разбирается устройство предельно просто. Сначала отгибаем немного верхнюю крышку и снимаем ее. Делать это надо в полностью открытом положении крышки.
Затем вставляем что нибудь острое между половинками корпуса и разъединяем его. Пластмасса корпуса очень хорошая, достаточно эластичная, потому сломать тяжело.

Получается, что корпус состоит из трех частей + плата, но еще есть кнопка, которая постоянно норовит выпасть и потеряться, будьте внимательны.

На первый взгляд, очень аккуратно.

Но при более внимательном осмотре видны следы флюса, а также иногда не очень аккуратная пайка. Понятно, что на работоспособности это особо не отражается, но позволяет сделать общие выводы о культуре производства.
Напомню, все фото кликабельны.

Элементов на плате весьма много. Виден, микроконтроллер, отдельные зарядные устройства и т.д. Также отмечу большое количество пассивных радиоэлементов.

1. Микроконтроллер PIC16F1933 производства Microchip.
2. Отдельные зарядные устройства организованные при помощи аналогов/клонов LTC4054. Здесь все просто, рядом находится резистор 2.2к, соответственно ток заряда около 0.5 Ампера. В самом начале я писал характеристики Повербанка и там было указано что входной ток до 1 Ампера, реально — до 2 Ампер, этот надо учитывать при выборе блока питания.
3. Микросхема DC-DC повышающего преобразователя. Применена довольно известная G5177C. Согласно даташиту она обеспечивает длительный выходной ток 2,1 Ампера и гарантированный кратковременный в 3 Ампера. Частота работы 500кГц.
4. Выходные USB разъемы. Вот здесь и кроется секрет отличия выходных токов. Информационные контакты имеют разное подключение, потому подключенные устройства выставляют разные токи заряда.
5,6. Но кроме разной распайки информационных контактов имеются и "аппаратные" отличия. Около каждого разъема находится полевой транзистор, подключающий этот разъем, но кроме этого есть еще токоизмерительный шунт. Для первого разъема шунт 0.1 Ома, для второго — 0.05 Ома.

Получается, что за выходным током следит микроконтроллер, но выходной ток определяется распайкой разъемов и логикой работы потребителя. собственно потому и получается иногда ситуация, что Повербанк может, но потребитель не хочет, и наоборот, потребитель готов забрать 2 Ампера, а повербанк не может обеспечить такой ток в первом разъеме. Кабель без информационных жил частично может решить эту проблему, но на мой взгляд очень не хватает "умных" контроллеров, которые сами могут выставлять соответствующие сигналы на информационных линиях. Причем не так важно, будет ли "уметь" повербанк режим QC, но даже без такой функции контроллеры очень не помешали бы.

Отмечу отдельно, что даже при условии возможности "программного" отключения DC-DC преобразователя, устройство умеет отключать нагрузку отдельными транзисторами, причем независимо.

Микросхема преобразователя имеет включение как в даташите, потому при определении максимального выходного тока я пользовался этим данными.

С обратной стороны платы элементов почти нет, большая часть платы пустая.

Около USB разъемов расположен дроссель и диод. Дроссель имеет параметры как в описании микросхемы преобразователя, назначение диода я покажу позже.
А вот пружины мне совсем не понравились, выходит слишком большая длина проволоки.

Я не стал рисовать полную принципиальную схему, так как не видел в этом смысла, но покажу принцип строения данного поверанка.
Сначала питание поступает на четыре одинаковых зарядных устройства, которые заряжают аккумуляторы независимо от остальных элементов схемы.
При помощи четырех диодов (D2-D5) организована защита от установки аккумулятора в неправильной полярности. Также благодаря этим диодам микроконтроллер может следить независимо за напряжением каждого аккумулятора.
После диодов напряжение поступает на повышающий преобразователь, который обеспечивает на выходе 5 Вольт с током до 2.1(3) Ампера. Микроконтроллер управляет работой преобразователя, периодически включая его на короткое время. Данный режим необходим для определения подключения нагрузки и автоматического включения Повербанка.
Минусовой контакт USB разъемов подключен через ключевой транзистор и токоизмерительный шунт. Напряжение от шунта измеряется микроконтроллером и на экран выводятся данные о токе потребления. Транзистор отключает нагрузку при превышении тока, управляется от микроконтроллера.
Выходное напряжение также измеряется микроконтроллером, но так как между минусом USB разъема и минусом остальной схемы присутствует шунт и транзистор, то и получается, что на индикаторе мы видим стабильные 5.06 Вольта, а в реальности при токе в 2 Ампера на выходе только 4.92, разница падает на этих элементах. Это принципиальное ограничение, потому индикатор Повербанка это скорее просто показометр.

Отдельно отмечу то, что кроме функции независимого заряда аккумуляторов, а также независимого управления выходами и защиты, устройство имеет функцию UPS, т.е. может заряжать аккумуляторы и питать нагрузку независимо. При подаче питания на Повербанк входные 5 Вольт через отдельный диод (D1) поступают на вход преобразователя, а так как это напряжение выше, чем от аккумуляторов, то и питание производится от внешнего БП.

Меня часто спрашивают, как сделать простой бесперебойник 5 Вольт. Вот типичный пример, зарядное устройство на базе TP4054 (4056), два диода (для одного аккумулятора) и повышающий преобразователь.

В общем схемотехническое решение устройства "лобовое", т.е. без каких либо хитростей, все просто и прозрачно. Минусом такого решения является низкий КПД, так как диодная развязка это лишний потребитель энергии.

В качестве оценки КПД устройства я решил сравнить реальную емкость аккумуляторов и отдаваемую в нагрузку. Для этого я нагрузил устройство током в 1.5 Ампера и установил два аккумулятора.
Согласно моим данным емкость аккумуляторов составляет около 7.3 Втч, соответственно два аккумулятора дадут 14.6 Втч.
Скажу сразу, КПД зависит от тока нагрузки и количества установленных аккумуляторов, потому при снижении тока и установке четырех аккумуляторов КПД будет немного выше.

На выходе я получил 11.46 Втч, что дает КПД около 78.5%.

Как вы понимаете, мне захотелось большего, потому были куплены более эффективные диоды 30BQ015. Родные имели падение около 0.34 Вольта, на новых при том же токе падало 0.24 Вольта. Хотел купить диоды с падением около 0.15 Вольта, но в продаже их не оказалось 🙁

Для эксперимента я впаял сначала пару диодов. Они заметно больше и площадки под них не рассчитаны, пришлось сначала залудить контакты диодов, а затем прогревая "усадить" их на место.

Результат стал лучше, хотя и ненамного. Вместо 11.46 я "скачал" 12.03, КПД составил — 82.4%

В процессе теста я контролировал температуру компонентов, старые диоды прогревались до 80 градусов (все тесты в конце разряда, при самом большом токе), новые только до 54.4. Микросхема преобразователя же нагревалась всего до 56.6 градуса, что на мой взгляд очень хорошо.
Кстати, в отличие от полевых транзисторов, которые установлены в микросхеме преобразователя и на выходе, диоды имеют отрицательную зависимость падения от температуры. Т.е. чем выше температура диода, тем меньше на нем падает, потому высокая температура диода это не всегда зло.

Заменив диоды я немного поднял КПД, но как всегда хотелось большего.
Для начала я выяснил, что на дорожках до диодов падает около 0.02 Вольта, плюс столько же падает на дорожке от дальнего диода к преобразователю. итого общее падение 0.04 Вольта.
Дорожки продублировал проводом с сечением 0.5мм.
Попутно в качестве небольшого дополнения установил еще один конденсатор перед преобразователем (просто потому что было пустое место под него), защитный диод по входу 5 Вольт (для него также было место, тем более диод у меня остался после замены) и немного подкорректировап токоизмерительный шунт второго канала, запаяв параллельно резистор 1 Ом.

Но куда большее удивление было после того, как я измерил падение на пружинах к аккумуляторам, 0.17 Вольта! Это больше, чем я выиграл от замены диодов и пропайки дорожек.
Взяв провод я продублировал пружины. Конечно для такого лучше использовать очень гибкий провод, по типу такого как используется у щеток электроинструмента, но пришлось использовать обычный.

Эффект оказался весьма значительным, КПД вырос до 87.6%.
Итого у меня вышло падение напряжения на разных участках до и после переделки:
Пружины — дорожка до диодов — диоды — дорожка после диодов
0.17 — 0.02 — 0.34 — 0.02 = 0,55 Вольта !!!
0,05 — 0,003 — 0,24 — 0,004 = 0,3 Вольта.

Причина повышения КПД кроется не столько в том, что устройство стало отключаться при более низком напряжении на аккумуляторе, сколько в том, что теперь напряжение на входе преобразователя выше, соответственно с повышением напряжения падает ток потребления по входу, соответственно более эффективно используется энергия.

Предвижу следующий вопрос, что можно еще улучшить? Да особо немного, как максимум, применить диоды 95SQ015, но они дороже, да и КПД вырастет не очень сильно. Еще можно заменить выходные ключевые транзисторы, но в некоторых ситуациях это вообще ничего не даст.
КПД самой микросхемы составляет около 94% при питании 3.5 Вольта и токе нагрузки 1.5 Ампера, в моем случае вышло около 87.6%, разница 6.5%, конечно многовато, но к сожалению дальнейшие способы дороги и не так эффективны.

Почему я не использовал вместо диодов известную схему защиты с полевым транзистором. Дело в том, что эта схема не подходит по двум причинам:
1. Она работает только с одним аккумулятором, если соединить хотя бы две такие схемы, то если хотя бы один аккумулятор из двух будет вставлен правильно, то второй транзистор будет также открыт.
2. Так как транзистор открывается от напряжения на выходе, то не получилось бы организовать функцию "бесперебойника".

Меня иногда спрашивают, как сделать простой "бесперебойник" на 5 Вольт. В качестве одного из вариантов можно применить упрощенное решение, которое использовано в данном Повербанке.
Как говорится, выкинем все лишнее и оставим только то, что необходимо.

На этом все, пожалуй единственное, что я не проверил, так это ток потребления в дежурном режиме. Но так как характер потребления импульсный, то измерить его не очень удобно.

Плюсы.
Удобная конструкция
Независимый заряд аккумуляторов
Поддержка функции "бесперебойника"
Защита от перегрузки, короткого замыкания выходов
Защита от переполюсовки аккумуляторов
Наличие дисплея

Минусы.
Не очень эффективная схема, большие потери на развязывающих диодах.
Большие потери на пружинах к минусовым клеммам аккумуляторов.
Автоматическое отключение при токе потребления ниже 0.05 Ампера, подойдет не для всех устройств. Либо надо заряжать два устройства сразу.
Небольшое собственное потребление.

Мое мнение. Насколько я могу судить, данный повербанк представляет собой довольно неплохой "конструктор" для доработки, но в готовом виде не очень эффективен, так как имеет низкий КПД.
Приятно радует функция одновременного заряда аккумуляторов и питания подключенного устройства. Но следует учитывать, что в таком случае ток потребления самого Повербанка будет немного больше суммы тока заряда и потребления нагрузки. например 2х500мА заряд + 2 Ампера нагрузка + потери на преобразовании = около 4.5 Ампера. Потому я бы не рекомендовал использовать такой режим с "тяжелыми" нагрузками, а также внимательно отнестись к выбору БП.
Также этот Повербанк можно использовать просто как зарядное устройство для аккумуляторов размера 18650.
Если хочется доработать быстро и эффективно, то достаточно усилить проводом пружины и силовые дорожки. Замена диодов тоже улучшит результат, но в два раза меньше, чем пропайка дорожек и пружин.

На этом все, надеюсь что обзор был полезен.
Магазин предложил купон TC01 с которым цена должна составить $12.99. Срок действия купона до 14 февраля.

www.kirich.blog

Как сделать мобильный повер банк своими руками

Пауэрбанки являются очень полезными устройствами, позволяющими заряжать наши гаджеты в любом месте. Очень сложно поддерживать заряд батареи, постоянно пользуясь телефоном в течение дня. Поэтому важно всегда иметь под рукой резервную переносную батарею для телефона. Как самому собрать повер банк?

Для нашего самодельного повербанка используем аккумуляторы от старой батареи для ноутбука. Батарея для ноутбука требует замены каждые несколько лет, но не все литий-ионные элементы, из которых она состоит, являются поврежденными. Они могут быть извлечены и использованы для различных целей.

Примечание. Наш запасной аккумулятор для телефона, сделанный своими руками сможет заряжать только устройства под управлением Android. Для зарядки iOS-устройств и планшетов требуется специальное значение напряжения (D+ = 2,76 В и D- = 2,06 В – для устройств с потреблением тока 1 А, D+ = 2,0 В и D- = 2,0 В – для устройств с потреблением тока 500 мА). В принципе, такие значения для паувербанка можно получить с помощью делителя напряжения, состоящего из нескольких резисторов.

Шаг 1: Заказываем компоненты для power bank

Ebay.com:

Amazon.com:

  • Модуль зарядки TP4056 – ссылка
  • Конвертер повышения напряжения с 3,7 до 5 В – ссылка
  • Контактные перемычки – ссылка
  • Выключатель – ссылка
  • Паяльник – ссылка
  • Клеевой пистолет – ссылка
  • Литий-ионные аккумуляторы на напряжение 3,7 В – ссылка

Amazon.in:

  • Литий-ионные аккумуляторы на напряжение 3,7 В – ссылка
  • Модуль зарядки TP4056 – ссылка
  • Конвертер повышения напряжения с 3,7 до 5 В – ссылка
  • Контактные перемычки – ссылка
  • Выключатель – ссылка
  • Паяльник – ссылка
  • Клеевой пистолет – ссылка

Еще для батарейки нужны картон, двусторонний скотч и соединительные провода.

Шаг 2: Смотрим видео

Видео – замечательный инструмент, который дает глубокое понимание процесса изготовления устройства. Тем не менее, прочтите статью до конца.

Шаг 3: Подготавливаем литий-ионные элементы для паувербанк

Если вы будете использовать новые литий-ионные аккумуляторы, то можете пропустить этот шаг.

Если вы собираетесь достать внешний аккумулятор для телефона power bank из батареи ноутбука, то следуйте данной инструкции. Батарея ноутбука состоит из нескольких литий-ионных элементов, соединенных вместе в определенных комбинациях. Когда батарея перестает заряжаться или выходит из строя, то обычно неисправными являются только несколько ее аккумуляторов, тогда как остальные еще могут работать. Используем исправные элементы для нашего пауэрбанка.

  1. Аккуратно вскройте батарею ноутбука, стараясь не повредить элементы внутри ее.
  2. Откусите провода, соединяющие аккумуляторы между собой.
  3. Выньте аккумуляторы и протрите каждый влажной тканью, чтобы удалить клей.
  4. С помощью мультиметра, проверьте напряжение на каждом аккумуляторе.
  5. Не используйте элементы с напряжением менее 2,5 В, так как они могут быть повреждены и их трудно будет восстановить.
  6. Если четыре из шести аккумуляторов окажутся исправными, то это уже неплохо.

Шаг 4: Подключаем аккумуляторы

  1. Тщательно зачистите клеммы элементов наждачной бумагой.
  2. Разложите все элементы рядом друг с другом.
  3. Облудите клеммы. Работайте быстро, чтобы не допустить перегрева аккумуляторов.
  4. Возьмите контактные перемычки и облудите их с обоих концов.
  5. Приложите контактные перемычки к контактам аккумуляторов и припаяйте их с помощью паяльника.
  6. Соедините таким образом все элементы по параллельной схеме.
  7. Допустим, что каждый элемент имеет емкость 2200 мА*ч, четыре элемента, соединенных параллельно, образуют батарею 3,7 вольта, 8800 мА*ч.
  8. Припаяйте провода к клеммам получившейся батареи.

Шаг 5: Делаем корпус

  1. Возьмите лист толстого картона.
  2. Положите батарею из аккумуляторов на картон и отметьте на нем ее размеры.
  3. Сделайте коробку для размещения электронной схемы и батареи.
  4. Конструкция корпуса будет зависеть от расположения компонентов.
  5. Придумайте свой дизайн корпуса.
  6. Разметьте места размещения компонентов в корпусе.
  7. С помощью ножа аккуратно вырежьте отверстия для переключателя, портов USB и Micro USB.

Примечание. Обязательно изучите все изображения в этом проекте доп аккумулятора для телефона или посмотрите видео.

Шаг 6: Подключаем компоненты пауэр банк

  1. С помощью двустороннего скотча закрепите аккумуляторы внутри корпуса.
  2. Поместите модуль TP4056 в отведенное для него место в корпусе и закрепите его двусторонним скотчем.
  3. Аналогичным образом разместите преобразователь напряжения 5 В в специально отведенном для него месте и также закрепите двусторонним скотчем.
  4. Приклейте горячим клеем выключатель в отверстии корпуса.
  5. Распаяйте компоненты согласно схеме, представленной выше.
  6. Перед тестированием пауэрбанка, необходимо проверить его выходное напряжение, чтобы не вывести из строя мобильный телефон.
  7. С помощью мультиметра, проверьте выходное напряжение и отрегулируйте его до 5 В с помощью потенциометра.
  8. Подключите USB-кабель и проверьте работу пауэрбанка.
  9. Вырежьте крышку из картона, чтобы закрыть корпус.
  10. Сделайте в верхней части корпуса прорезь для светодиода, как показано на фото выше.
  11. Склейте коробку с помощью термо-клея.

Шаг 7: Тестируем пауэрбанк

Ваш мобильный пауэрбанк готов. Подключите к нему USB-устройство и убедитесь, что оно быстро заряжается.

Вот и все. Посмотрите видео изготовления мобильного пауэрбанка.

Вы также можете сделать мощное ручное зарядное устройство, в котором в качестве генератора используется двигатель постоянного тока. Вот видео изготовления такого повербанк:

masterclub.online

Отправить ответ

avatar
  Подписаться  
Уведомление о