Usb осциллограф схема своими руками – Маленький, простой осциллограф. Обзор осциллографа, внутреннее устройство и схема осциллографа. Тест и где купить осциллограф
Осциллограф Карманный «OSKAR» своими руками.Пошаговая инструкция для самостоятельной сборки.
РадиоКот >Схемы >Цифровые устройства >Измерительная техника >Осциллограф Карманный «OSKAR» своими руками.Пошаговая инструкция для самостоятельной сборки.
Осциллограф карманный «OSKAR» — это универсальный радиоизмерительный прибор. Предназначенный для испытания и настройки радиоаппаратуры в полевых условиях, авто-электроники, радиолюбителей, наладчиков.
На экране осциллографа можно наблюдать изображения электрических сигналов синусоидальной формы с частотой от 0 Гц до 100 кГц (1МГц для версии V3.1) и импульсных сигналов любой формы и полярности с длительностью от бесконечности до 10 мкс, амплитудой от 20 милливольт до 70 вольт. Также осциллограф позволяет записывать медленно меняющие сигналы, продолжительностью до 80 секунд.
Осциллограф имеет встроенный вольтметр постоянного тока +/- 0-36в и омметр 0- 200 кОм.
Видео работы для затравки. https://youtu.be/MO4weBep4MA
Речь пойдет о достаточно хорошо зарекомендовавшем себя универсальном приборе второй версии. При всей своей простоте конструкции, его возможностей достаточно для применения радиолюбителями, автоэлектриками, наладчиками и в быту. Кроме своей основной функции осциллографического пробника, позволяет измерять напряжения, сопротивления, позванивать полупроводники и проверять светодиоды. Выполнен на доступных деталях и прост в настройке.
Подробнее о технических характеристиках:
— Габариты 130 *68 *19 мм
— Дисплей 50*30 мм 132*64 точек, светодиодная подсветка .
— Диапазон чувствительности 20 mV/div — 10 V/div с шагом 1-2-5 . Погрешность не более 5%.
— Открытый / закрытый вход
— Полоса пропускания 0 — 1 МГц.
— Частота выборок в реальном времени — до 0,8 МГц. Число точек экрана на одну выборку 1/1
— Комфортное наблюдение сигналов — до 100 килогерц.
— Режимы синхронизации : по фронту или спаду, ждущая, авто. Регулировка уровня.
— Запись в память и воспроизведение осциллограммы. «Замораживание» изображения для изучения. Измерение амплитуды и частоты
— Кнопки управления: вверх, вниз, установка.
— Питание : 3 элемента типа ААА , в среднем на 50 часов непрерывной работы. Напряжение питания 3,6 – 6вольт. Максимальное потребление 25мА
— Входное сопротивление / емкость — 0,5 МОм /30p. Открытый и закрытый входа
— Омметр с диапазоном 0 – 200 кОм точностью +/-5%
Конструктивно выполнен в прочном пластмассовом корпусе с оригинальным дизайном. Для подключения к проверяемой схеме используются обычные щупы от китайского мультиметра.
Принципиальная схема (кликабельно)
Скачать в формате sPlan 7.0
Ядром является микроконтроллер PIC18F14K50 фирмы «MICROCHIP», который собственно и выполняет все функции прибора. Аналоговая часть выполнена на сдвоенном операционном усилителе MCP6022 с полосой единичного усиления 10 МГц и аналоговом коммутаторе. Для получения виртуальной земли используется PWM модуль микроконтроллера с фильтром и формирователем на ОУ MCP601. В качестве дисплея использован черно-белый графический индикатор RDX0154-GC (TIC154A) разрешением 132*64 точки с подсветкой RTB01025 (LG-9-02-053-001 или TB1038 или TB1025S). Питание всей схемы выполняется от стабилизированного источника 3,3 вольта (LM2950-3.3). Управление питанием выполнено на транзисторах Т2 и Т3.
Все элементы установлены на двухсторонней печатной плате с одной стороны, а дисплей с подсветкой и кнопками с другой. В итоге получается компактная , жесткая конструкция.
Расположение элементов (кликабельно)
Скачать в формате *.lay
Сборка
Для сборки нам понадобятся
Перечень элементов:
Bat 1 = 1 x Держатель 3*AAA
C14 = 1 x 2400p 0805
C15 = 1 x 320p 0805
C21 = 1 x 10.0 10v
C1,C2,C7,C8,
C12,C13,C18,
C19,C20,C22,
C23,C25,C27 = 13 x 0.1 0805
C16,C17 = 2 x 27p 0805
C26,C28 = 2 x 100.0 10v
C3,C4,C5,C6 = 4 x 75p 0805
C9,C10,C11,C24 = 4 x 1.0 0805
D1,D2 = 2 x LL4148
DA1 = 1 x MCP6022 SO8
DA2 = 1 x MCP601
DD = 1 x PIC18F14K50 SO20
IC1 = 1 x 74hc4066 SO14
J1,J2,J3,J4,J5 = 5 x BANAN монтажное
LCD = 1 x RDX0154-GC
R1 = 1 x 75 0805
R10 = 1 x 2k2 0805
R15 = 1 x 1k2 0805
R19 = 1 x 2k 0805
R21 = 1 x 22K 0805
R28 = 1 x 6k2 0805
R11,R12,R16 = 3 x 680k 0805
R13,R18 = 2 x 3k 0805
R14,R22,R23,
R24,R29,R31,
R32 = 7 x 22k 0805
R2,R5,R9,R17,
R26,R27 = 6 x 10k 0805
R3,R4,R30 = 3 x 220k 0805
R7,R8,R20,R25 = 4 x 1k 0805
S1,S2,S3 = 2 x Микрокнопка тактовая 301, 6х6х6мм
T2 = 1 x BC807
T1,T3 = 2 x BC817
VR1 = 1 x lp2950-3.3
XT1 = 1 x 12 MHz
Корпус = 1 x Z-34A
А также терпение, умение и прямые руки.
Приготовимся (Все картинки кликабельны)
Откусим с одной стороны втулку клеммы
Приготовим панель подсветки, откусив ножки
Припаяем
Установим ЖКИ и кнопки
Добавим провода и отсек питания
Сборка электроники закончена , займемся корпусом.
Сначала его требуется разметить.Чертеж с размерами
Разметим переднюю панель изнутри с помощью «колумбика» и шилом наколим центра.
Получится примерно так
Сверлим диаметром 1 мм размеченные отверстия и вырезаем окно.
Сверлим диаметром 3,6 мм 8 отверстий.
Сверлим диаметром 3,6 мм 4 отверстия в задней крышке.
Сверлим диаметром 6 мм 5 отверстий, снимаем фаски, зенкуем, финишно обрабатываем проем окна, снимаем фаски.
Устанавливаем две клеммы омметра.
Механическая обработка корпуса окончена, можно убрать стружку и пыль, дальше должно быть все чисто.
Займемся наклейкой. Нам понадобится струйный принтер и прозрачная пленка для струйных принтеров. Печатаем вот такую наклейку
Скачать в формате *.fpl (программу делает та же фирма, что и sPlan)
Сушим, аккуратно вырезаем. Используем тонкие тканевые перчатки, иначе вид у наклейки будет совсем не презентабельный.
Приготовим корпус к наклеиванию. Нам понадобится тонкий двухсторонний скотч с пластиковой основой шириной 50 мм. Приклеим.
Удалим лишнее острым скальпелем.
Снимаем защитную бумагу второй стороны.
Очень аккуратно приклеиваем. Внимание , у Вас только одна попытка, повторить не повредив наклейку не получится.
Острым скальпелем прорезаем отверстия под клеммы и устраняем излишки скотча.
Корпус готов, можно собирать. Сначала установим три заранее обрезанных сбоку втулки клемм. Уберем защитную пленку с ЖКИ и оденем сверху лицевую панель. Вставляем клеммы.
Закручиваем клеммы, припаиваем провода к клеммам омметра, приклеиваем батарейный отсек. Должно получиться примерно так.
Калибровка , настройка.
Калибровка частотных характеристик аналоговой части.
Для данной процедуры нам понадобится генератор прямоугольных импульсов хорошего качества с выходным напряжением от 50 милливольт до 10 вольт частотой 1- 5 килогерц.
Как известно линейность АЧХ определяется переходной характеристикой, для этого и используются прямоугольные импульсы. Существует три варианта переходной характеристики входных цепей. Недокомпенсация, перекомпенсация, и нормальная. Это и показано на картинках.
Целью настройки является получение идеального прямоугольника на экране.
Всего требуется настройка трех цепей компенсации на пределах 50 мв/дел, 200 мв/дел, 2в/дел.
В первом случае подбираются конденсаторы С3-С6, во втором С15 , в третьем С14.
Для настройки выбрать нужный предел измерения и развертки, подать на вход сигнал достаточной амплитуды, и подобрать конденсатор до получения прямоугольного сигнала
Настройку проводить именно в этом порядке , начиная с 50 мв/дел.
Калибровка встроенного вольтметра.
Нам понадобится источник постоянного стабилизированного напряжения напряжением 15 — 20 вольт с точно известным напряжением.
Перейти в режим Vx – режим вольтметра постоянного тока.
Нажать и удерживать кнопку SET в течении примерно 20 секунд, не обращая на надписи на экране.
Нижней кнопкой установить нулевые показания , точность нуля можно проверить подключая источник напряжения в разной полярности — должны быть одинаковые напряжения с точностью не хуже 0,1 вольт.
подключить источник напряжения и верхней кнопкой выставить истинное значение напряжения.
Калибровка идет по кругу во всех случаях, нажимать до получения нужного результата.
Калибровка встроенного омметра.
Нам понадобится точный резистор сопротивлением 70-150 кОм.
Калибровка проводится подбором резистора R17.
Перейти в режим Om — режим омметра. Подключить образцовый резистор и путем подбора R17 добиться показаний с точностью не хуже +/- 3%
На этом все калибровки окончены.
Управление осциллографом.
Включение / выключение – длительное нажатие кнопки «Установка».
Движение по меню — кнопка «Установка».
Выбор параметра — кнопки вверх, вниз.
В меню выбирается : (слева направо)
— Тип синхронизации : по фронту, по спаду. отображается характерными символами
— Установка значения частоты развертки. Отображается значение в мкс,мс,с.
— Уровень синхронизации , ориентир – треугольник слева экрана, синхронно перемещающийся вверх-вниз.
— Сдвиг по оси Y
— Режим синхронизации авто «At», ждущий»Wt»,
— Усиление канала вертикального отклонения, отображается установленное значение.
— вкл/выкл подсветки индикатора.
— индикация состояния прибора
GO – нормальный режим работы
ST – остановка смены изображения и вывод измеренной амплитуды и частоты. Кнопка «SET» выводит строку с настройками
WR – кнопкой «SET» записать текущую осциллограмму в память
RD – кнопкой «SET» прочесть осциллограмму из памяти и вывести на экран
HL – вызов подсказки и краткого описания.
Vx – режим вольтметра постоянного тока. Щупы для измерения подключаются к клеммам «Общий» и «Открытый вход»
Om — режим омметра.
Перейти к первому пункту меню можно вернувшись в нормальный режим работы.
Включение в режиме демонстрации – включить удерживая кнопку «вверх»
При показе демонстрации включение подсветки – кнопка вверх, выход из демонстрации – вниз.
Режимы демонстрации и подсказки, и номера страниц пишутся в нижнем правом углу. В режиме демонстрации прибор автоматически отключится через 2-3 часа для предотвращения полного разряда батареи.
Уровень заряда батареи – в правом верхнем углу. При понижении напряжения ниже минимального прибор выключается
Применение и использование.
Подключение источника сигнала
Гнезда слева на право
— общий
— открытый вход
— закрытый вход
Максимальное напряжение — 100 вольт любой полярности. При превышении могут быть необратимо повреждены цепи прибора.
Если сигнал ограничен сверху или снизу или недостаточной амплитуды — переключите значение входного делителя для полного отображения сигнала.
Выбор режима работы
Режим работы осциллографа определяется видом и частотой развертки, видом синхронизации, ослаблением сигнала и соединением с исследуемой схемой. Если некоторые из этих условий неизвестны, то необходимо путем ряда проб определить, какой режим является наилучшим для исследования данного сигнала. Частота развертки. При выборе развертки следует помнить, что непрерывная развертка обычно используется для наблюдения синусоидальных колебаний или колебаний другой формы, а ждущая развертка сложит для наблюдения импульсных сигналов. Частота развертки выбирается с таким расчетом, чтобы на экране были видны все детали исследуемого сигнала. Изображение сигнала по горизонтали должно занимать возможно большую часть экрана. Увеличение частоты развертки увеличивает протяженность изображения по горизонтали. Установите переключатель TIME/DIV в положение, позволяющее наблюдать требуемое число периодов сигнала. При слишком большом числе периодов для лучшего разрешения, измените положение переключателя на большую скорость развертки. Если на экране присутствует линия, пробуйте перейти к более низкой скорости развертки. Так как если длительность развертки меньше периода сигнала, то только часть его будет показана на экране, и эта часть может выглядеть как прямая линия для прямоугольного или синусоидального сигнала.
Синхронизация развертки. Для хорошей синхронизации правильно выбирайте уровень и полярность синхронизации Цифровой запоминающий осциллограф позволяет регистрировать непериодические сигналы, например одиночный импульс, выброс и т.п. При регистрации однократного сигнала для правильного выбора уровня и фронта запуска, необходимо предварительно знать некоторые параметры этого сигнала. Например, для регистрации логического ТТЛ сигнала нужно установить уровень 2В и выбрать запуск по нарастающему фронту. Если параметры этого сигнала неизвестны, попробуйте получить осциллограмму обычным способом
Также осциллограф позволяет записывать медленно меняющие сигналы, продолжительностью до 80 секунд
В режиме измерений будет показано напряжение сигнала от нижнего пика до верхнего Vpp и частота измеренная по уровню синхронизации. Для измерения частоты на экране должно быть два полных периода сигнала по уровню синхронизации. Точность измерения определяется разрешением экрана (+/-5%) Сохраненная в памяти осциллограмма не стирается при отключении батареек. Вместе с ней сохраняются и режимы настроек, которые заменят текущие при чтении сохраненного сигнала. Текущие настройки автоматически сохраняются в энерго-независимой памяти при выключении.
Режим прозвонки
Перейти в режим омметра . При сопротивлении цепи менее 10 Ом индикатор будет моргать подсветкой. Запрещается подавать какое –либо напряжение на клеммы омметра
Требования по электробезопасности.
Портативный осциллограф предназначен для проведения измерений по категории II, степень загрязнения 1, макс. напряжение 600 В, в соответствии с нормами IEC1010-1/UL 94V0
Запрещается проводить измерения в помещениях с повышенной влажностью и загрязненностью; запрещается проводить измерения проводников, напряжение которых может превышать 600 В эфф. по отношению к земле; прибор предназначен для проведения измерений внутри помещений
Максимальное входное напряжение на разъемах прибора 100 В пик. (AC+DC) – аналоговый вход
Не открывайте корпус прибора во время проведения измерений
Во избежание удара электрическим током перед открытием корпуса прибора отсоедините все измерительные щупы от входных гнезд осциллографа при измерении напряжений, превышающих 70 В, используйте изолированные измерительные пробники со встроенными делителями.
Если прибор не планируется использовать в течение долгого времени, отключите батареи питания (под задней крышкой)
Прошивка
Файлы:
oskar1
pcb
pcb2
Прошивка
разводка
схема
Архив ZIP
Все вопросы в Форум.
Как вам эта статья? | Заработало ли это устройство у вас? |
USB-осциллограф своими руками: схема :: SYL.ru
Осциллограф – это портативное устройство, которое создано для тестирования микросхем. Дополнительно многие модели подходят для промышленного контроля и могут использоваться с целью проведения различных измерений. Сделать осциллограф своими руками нельзя без стабилитрона, который является основным его элементом. Устанавливается данная деталь в прибор различной мощности.
Дополнительно приборы в зависимости от модификации могут включать в себя конденсаторы, резисторы и диоды. К основным параметрам модели можно отнести количество каналов. В зависимости от этого показателя меняется предельная полоса пропускания. Также при сборке осциллографа следует учитывать частоту дискретизации и глубину памяти. Для того чтобы делать анализ полученных данных, устройство подключается к персональному компьютеру.
Схема простого осциллографа
Схема простого осциллографа включает в себя стабилитрон на 5 В. Пропускная способность его зависит от типов резисторов, которые устанавливаются на микросхему. Для увеличения амплитуды колебаний используются конденсаторы. Изготовить щуп для осциллографа своими руками можно из любого проводника. При этом порт подбирается в магазине отдельно. Резисторы первой группы минимум сопротивление в цепи должны выдерживать на уровне 2 Ом. При этом элементы второй группы должны быть более мощными. Также следует отметить наличие на схеме диодов. В некоторых случаях они выстраиваются в мосты.
Одноканальная модель
Сделать одноканальный цифровой осциллограф своими руками можно только с применением стабилитрона на 5 В. При этом более мощные модификации в данном случае недопустимы. Связано это с тем, что повышенное предельное напряжение в цепи приводит к увеличению частоты дискретизации. В итоге резисторы в устройстве не справляются. Конденсаторы для системы побираются только емкостного типа.
Минимум резистор сопротивление должен держать на уровне 4 Ом. Если рассматривать элементы второй группы, то параметр пропускания в данном случае должен составлять 10 Гц. Для того чтобы его повысить до нужного уровня, используются различного типа регуляторы. Некоторые специалисты для одноканальных осциллографов советуют применять ортогональные резисторы.
В данном случае следует отметить, что показатель частоты дискретизации они поднимают довольно быстро. Однако негативные моменты в такой ситуации все же присутствуют, и их следует учитывать. В первую очередь важно отметить резкое возбуждение колебаний. Как следствие, растет асимметричность сигналов. Дополнительно существуют проблемы с чувствительностью устройства. В конечном счете, точность показаний может быть не самой лучшей.
Двухканальные устройства
Сделать двухканальный осциллограф своими руками (схема показана ниже) довольно сложно. В первую очередь следует отметить, что стабилитроны в данном случае подходят как на 5 В, так и на 10 В. При этом конденсаторы для системы необходимо использовать только закрытого типа.
За счет этого полоса пропускания устройства способна возрасти до 9 Гц. Резисторы для модели, как правило, применяются ортогонального типа. В данном случае они стабилизируют процесс передачи сигнала. Для выполнения функций сложения микросхемы подбираются в основном серии ММК20. Сделать делитель для осциллографа своими руками можно из обычного модулятора. Это не особенно сложно.
Многоканальные модификации
Для того чтобы собрать USB-осциллограф своими руками (схема показана ниже), стабилитрон потребуется довольно мощный. Проблема в данном случае заключается в повышении пропускной способности цепи. В некоторых ситуациях работа резисторов может нарушаться из-за смены предельной частоты. Для того чтобы решить эту проблему, многие используют вспомогательные делители. Указанные устройства во многом помогают повысить порог предельного напряжения.
Сделать делитель можно при помощи модулятора. Конденсаторы в системе необходимо устанавливать только возле стабилитрона. Для повышения полосы пропускания используются аналоговые резисторы. Параметр отрицательного сопротивления в среднем колеблется в районе 3 Ом. Диапазон по блокированию зависит исключительно от мощности стабилитрона. Если предельная частота резко падает во время включения устройства, то конденсаторы необходимо заменить на более мощные. Некоторые специалисты в данном случае советуют устанавливать диодные мосты. Однако важно понимать, что чувствительность системы в этой ситуации значительно ухудшается.
Дополнительно необходимо сделать щуп для устройства. Для того чтобы осциллограф не конфликтовал с персональным компьютером, целесообразнее микросхему использовать типа ММР20. Сделать щуп можно из любого проводника. В конечном итоге человеку останется только прибрести порт для него. Затем при помощи паяльника вышеуказанные элементы можно соединить.
Сборка устройства на 5 В
На 5 В осциллограф-приставка своими руками делается только с применением микросхемы типа ММР20. Подходит она как для обычных, так и мощных резисторов. Максимум сопротивление в цепи должно составлять 7 Ом. При этом полоса пропускания зависит от скорости передачи сигнала. Делители для устройств могут применяться самых разных видов. На сегодняшний день более распространенными принято считать статические аналоги. Полоса пропускания в такой ситуации будет находиться на отметке 5 Гц. Чтобы ее повысить, необходимо использовать тетроды.
Подбираются они в магазине, исходя из параметра предельной частоты. Для увеличения амплитуды обратного напряжения многие специалисты советуют устанавливать только саморегулируемые резисторы. При этом скорость передачи сигнала будет довольно высокой. В конце работы необходимо сделать щуп для подключения цепи к персональному компьютеру.
Осциллографы на 10 В
Изготавливается осциллограф своими руками со стабилитроном, а также резисторами закрытого типа. Если рассматривать параметры устройства, то показатель вертикальной чувствительности должен находиться на уровне 2 мВ. Дополнительно следует рассчитать полосу пропускания. Для этого берется емкость конденсаторов и соотносится с предельным сопротивлением системы. Резисторы для устройства больше всего подходят полевого типа. Чтобы минимизировать частоту дискретизации, многие специалисты советуют применять только диоды на 2 В. За счет этого можно добиться большой скорости передачи сигнала. Для того чтобы функция слежения выполнялась довольно быстро, микросхемы устанавливаются типа ММР20.
Если запланировать режимы хранения и воспроизведения, то необходимо воспользоваться другим типом. Курсорные измерения в данном случае будут недоступны. Основной проблемой этих осциллографов можно считать резкое падение предельной частоты. Связано это, как правило, с быстрой разверткой данных. Решить поставленную задачу можно только с применением высококачественного делителя. При этом многие также полагаются на стабилитрон. Сделать делитель можно при помощи обычного модулятора.
Как сделать модель на 15 В?
Собирается осциллограф своими руками при помощи линейных резисторов. Предельное сопротивление они способны выдерживать на уровне 5 Мм. За счет этого на стабилитрон не оказывается большого давления. Дополнительно следует позаботиться о выборе конденсаторов для устройства. С этой целью необходимо сделать замеры порогового напряжения. Специалисты для этого используют тестер.
Если применять для осциллографа настроечные резисторы, то можно столкнуться с повышенной вертикальной чувствительностью. Таким образом, полученные данные вследствие тестирования могут быть некорректными. Учитывая все вышесказанное, необходимо применять только линейные аналоги. Дополнительно следует позаботиться об установке порта, который подсоединяется в микросхеме через щуп. Делитель в данном случае целесообразнее устанавливать через шину. Чтобы амплитуда колебаний не была слишком большой, многие советуют использовать диоды вакуумного типа.
Использование резисторов серии ППР1
Изготовить USB-осциллограф своими руками с данными резисторами – задача непростая. В этом случае необходимо в первую очередь оценить емкость конденсаторов. Для того чтобы предельное напряжение не превышало 3 В, важно использовать не более двух диодов. Дополнительно следует помнить о параметре номинальной частоты. В среднем этот показатель составляет 3 Гц. Ортогональные резисторы для такого осциллографа не подходят однозначно. Построечные изменения можно проводить только при помощи делителя. В конце работы надо заняться непосредственно установкой порта.
Модели с резисторами ППР3
Сделать USB-осциллограф своими руками можно с использованием только сеточных конденсаторов. Особенность их заключается том, что уровень отрицательного сопротивления в цепи может достигать 4 Ом. Микросхемы для таких осциллографов подходят самые разнообразные. Если взять стандартный вариант типа ММР20, то необходимо конденсаторов в системе предусмотреть как минимум три.
Дополнительно важно обратить внимание на плотность диодов. В некоторых случаях от этого зависит показатель полосы пропускания. Для стабилизации процесса деления специалисты советуют тщательно проверять проводимость резисторов перед включением устройства. В последнюю очередь подсоединяется непосредственно регулятор к системе.
Устройства с подавлением колебаний
Осциллографы с блоком подавления колебаний используются в наше время довольно редко. Подходят они больше всего именно для тестирования электроприборов. Дополнительно следует отметить их высокую вертикальную чувствительность. В данном случае параметр предельной частоты в цепи не должен превышать 4 Гц. За счет этого стабилитрон во время работы сильно не перегревается.
Делается осциллограф своими руками с применением микросхемы сеточного типа. При этом необходимо в самом начале определиться с типами диодов. Многие в данной ситуации советуют применять только аналоговые типы. Однако в этом случае скорость передачи сигнала может значительно снизиться.
Изготовление осциллографа в домашних условиях из планшета или ноутбука
Устройство с дисплеем на базе электронно-лучевой трубки, предназначенное для изучения параметров времени и амплитуды электрического сигнала, называется осциллографом. Подача сигнала осуществляется на вход устройства, результат записывается на фотоленту или выводится на экран. Оно возглавляет топ самых необходимых приборов, используемых для настройки и регулировки электронных схем.
Как выглядит осциллограф
Осциллограф и его функции
Это электронный прибор, на экране которого наблюдают за формой сигнала. В процессе работы доступен ряд опций:
- фиксирование мгновенных характеристик;
- аналогия фазовых смещений и форм сигналов с иными импульсами;
- контроль и мониторинг синусоидальных, треугольных и прямоугольных колебаний;
- развёртка импульса для измерения времени нарастания.
Проще говоря, это телевизионный приёмник, где отслеживается электросигнал визуально. Зная принципы работы и схему устройства, собирают осциллограф своими руками.
Классифицировать приборы возможно по следующим показателям:
- особенности работы и предназначение;
- количество сигналов, просматриваемых разом;
- способ обработки информации;
- вид воспроизводящего устройства.
По особенности работы подразделяются на модели: скоростные, стробоскопические, универсальные, запоминающие и специальные. Количество одновременно подающихся сигналов – один, два и более.
Важно! Многоканальные n-осциллографы высвечивают на экран n-графиков, считывая показания с n-го количества сигнальных входов.
Аналоговые и цифровые устройства делят между собой методы обрабатывания полученной информации. Узлы отображения сигналов представлены электронно-лучевыми трубками «ЭЛТ» или матричными панелями.
Схема простого осциллографа
Чтобы понять, как устроен прибор, изучают стандартную блок-схему.
Блок-схема осциллографа
В формировании сигнала на экране участвуют два вида отклонения луча: по вертикали и горизонтали. Пользуясь системой координат, эти развёртки обозначили как: Y и Х.
В блоке развёртки по вертикали выполняется обработка сигнала, подающегося в канал через аттенюатор. Он ступенчато регулирует амплитуду исследуемых величин, не допуская превышения должного уровня. Это удерживает изображение в границах дисплея.
Для синхронизации работы узла задающего генератора Х – отклонения с канала вертикальной развёртки на него подаётся сигнал. По умолчанию канал Y работает в открытом режиме. Отклонение луча по вертикали в этом случае в точности совпадает с уровнем сигнала. Помеха постоянной составляющей, при её наличии, будет смещать картинку или же загонять за границы дисплея. Это сильно мешает работе и требует постоянной подстройки ступенчатого регулятора.
Использование режима закрытого входа помогает этого избежать. Закрытый видеовход подразумевает включение конденсатора между ним и схемой. Конденсатор играет роль ёмкостного фильтра для постоянной составляющей входного сигнала.
Канал горизонтальной развёртки (X) подсоединяется к генератору. Тот выдаёт команды для отклонения луча ЭЛТ по горизонтали и действует в четырёх позициях:
- Режим внутренней синхронизации. Применяется для обработки сигнала, имеющего постоянную частоту. Возможна работа в режиме автоколебаний, где частота выставляется вручную. Выполняются захват частоты сразу после входа и повышение стабильности картинки.
- Режим внешней синхронизации, когда выполняется пуск генератора от входящего импульса. Актуален, когда синхронизация осуществляется от входа Y, по которому подаётся испытуемый сигнал. Команда запуска выполняется по фронту или спаду всплеска, а также по команде источника внешних пульсаций. Такой регламент работы удобен для рассмотрения нестабильных колебаний.
- Обеспечение синхронизации от сети питания 220 В, 50 Гц. Используется при определении искажений и помех от источников питания. Запуск блока происходит одновременно с импульсами напряжения сети.
- Однократный ручной пуск применим для слежения за сигналами логических схем непериодической природы. Чтобы снова включить генератор, его опять «взводят».
К сведению. Окончательное формирование уровней сигналов двух развёрток выполняют оконечные усилители.
Одноканальная модель
Такой прибор имеет один вход – один луч. Структурное строение показано на рис. выше. В состав схемы входят:
- экран – ЭЛТ;
- блок Y-развёртки: аттенюатор, предварительный усилитель, цепь задержки, начальное усиление синхронизации и оконечный усилитель выхода;
- блок Х-развёртки: устройство синхронизации, узел развёртки, выходной усилитель;
- схема усиления подсветки;
- калибратор;
- сетевой блок питания.
В таком приборе сигнал мониторинга подаётся на один вход и отображается движением луча на экране. Этого хватает для проведения измерений ряда параметров.
Двухканальные устройства
Когда требуется сравнить два вида сигнала, применяют такие приборы. Выделяют две разновидности:
- Двухканальные – для наблюдения импульсов с идентичных Y-каналов. Переключая тумблером, поочерёдно подают выходные сигналы на пластины ЭЛТ. Наблюдают отдельно каждый сигнал входов Y1-Y2 или совместно. Второй – при каждом обратном ходе развёртки.
- Двухлучевые – у них в наличии два отдельных Y-канала и двухлучевое исполнение ЭЛТ. У такого прибора совместный запуск генератора горизонтальной развёртки, включение вертикальной развёртки происходит для каждого канала отдельно. Это разрешает видеть 2 осциллограммы одновременно.
Многоканальные модификации
Современные аппараты выполняют мониторинг импульсов по нескольким каналам. Различают входы: аналоговые, цифровые или смешанные. Модели со смешанными каналами обрабатывают оба вида сигнала с выводом картинки на монитор.
Цифровой многоканальный осциллограф
Сборка устройства на 5 В
Полноценный цифровой прибор этой линейки без собственного дисплея называется USB oscilloscope. Продаются наборы комплектующих материалов для изучения работы с подобными устройствами. В комплект входят:
- прибор;
- кабель питания юсб;
- 2 щупа с «крокодилами»;
- программный продукт на диске.
Подключается к ПК через шнур USB. Собранный из набора измеритель подойдёт для приобретения начальных навыков. В самодельных схемах такая приставка собирается на микросхеме ММР20.
Осциллографы на 10 В
В схемах с подобным напряжением применяются резисторы закрытого типа и стабилитрон. Их параметры чувствительности по вертикали подбираются до 2 мВ. При расчёте полосы пропускания максимальное сопротивление устройства согласовывается с ёмкостью проводных конденсаторов. Диоды подбирают с напряжением 2 В, резисторы желательно выбирать полевые. Выбор диодов на такое напряжение позволит снизить частоту дискретизации до минимума и увеличить скорость передачи. Из-за быстрой развёртки данных предельная частота резко падает. Использование стабилитрона или делителя, выполненного из модулятора, поможет решить эту проблему.
Схема на 10 В
Как сделать модель на 15 В
При сборке используют линейные резисторы, сопротивление которых на уровне предела – 5 Мом. Это разрешает стабилитрону работать в щадящем режиме. При выборе конденсаторов предварительно тестером измеряется пороговое напряжение.
Внимание! Полученные результаты тестирования, при использовании для прибора настроечных резисторов, бывают неточными. Использовать подобает линейные резисторы.
При сборке не забывают смонтировать порт, присоединяемый через щуп к микросхеме, при этом через шину подключают делитель. Использование вакуумных диодов в сборке позволит контролировать уровень амплитуды колебаний.
Осциллограф на 15 В
Использование резисторов серии ППР1
Приборы, в состав которых входят элементы этой линейки, весьма популярны. Благодаря высокой чувствительности, применяются для мониторинга электроаппаратуры. Для создания этого измерителя потребуются ЭЛТ, импульсный модулятор, выпрямитель и контакторы с обкладками. Установка кенотрона оправдана точностью полученных показаний. Устройство оперативного типа требует установки контроллера.
Величина сопротивления не выше 34 Ома, а проводимость сигнала с коэффициентом 4,2-4,5 Ом. Через модулятор низкой проводимости выполняют подключение USB-порта. Спектральные расширители для схемы берутся импульсного типа.
Важно! Необходимо организовать стабилизацию напряжения, расширитель закрепить рядом с компаратором, который уменьшит тепловые потери.
Модели с резисторами ППР3
Выполнить сборку схемы с этими резисторами допустимо с применением сеточных конденсаторов. Сопротивление ёмкостной цепи Rц возможно до 4 Ом. В сборку на микросхеме ММР20 устанавливают не менее 3 шт. Важно делать проверку проводимости ППР3 до включения схемы.
Устройства с подавлением колебаний
Определение зашумленности сигнала и подавление выполняет отдельный узел. Схемы, включающие в себе такой блок, имеют значения предельной частоты не выше 4 Гц. В этом случае используются аналоговые диоды и микросборки сеточного типа.
Сборка карманного осциллографа на основе «андроида»
Если частота, подлежащая измерениям, лежит в диапазоне 20 кГц (звук слышимости ухом), то используют наушники с микрофоном. Чтобы собрать новый прибор на основе ОС «Андроид», можно обойтись без дополнительных узлов. Из гарнитуры берётся разъём 3,5 мм. К микрофонным контактам припаиваются щупы. Между ними и штекером вставляется коммутатор пределов измерения. Скачивают на телефон приложение «Осциллограф». Сигнал, поступающий на вход микрофона, будет отображаться на экране.
Схема коммутатора пределов измерения
Плюсы и минусы «андроидной» сборки
Недостатков в таком методе больше, чем плюсов. Минусы:
- не даёт точности измерений;
- разрешает мерить только высокочастотные сигналы;
- нельзя померить переходные процессы при постоянном напряжении;
- подвергается опасности вход гаджета.
Плюсов мало:
- 20 минут времени на монтаж;
- сборка несложная.
Трудно назвать эту приставку хорошим измерительным прибором.
Сборка осциллографа из планшета
Смонтировать осциллограф из ноутбука или планшета возможно с помощью приставки Hantek-6022BE-2-20-USB-PC. Планшет используется как монитор. Управление измерениями командой – с экрана или «мышкой».
Приставка Hantek
Программное обеспечение для осциллографа на планшете и андроиде
Если usb осциллограф из звуковой карты изготовлен своими руками, скачивается ПО. Программу качают на «Плей Маркете» или других аналогичных сайтах для скачивания приложений. Подобные программы позволяют не только добиться точности измерений для планшета, но и выполнять нужную калибровку сигнала.
Широкодиапазонная частота с помощью отдельного гаджета
Расширить частотный диапазон позволит применение отдельного устройства. Оно включает в себя преобразователь аналога в цифру. Дальнейшая подача импульсов происходит в цифровом формате. Точность измерений повышается. Выпускается в виде портативного прибора с дисплеем.
Осциллограф из планшета на «Андроид»
При приобретении приставки-осциллографа выбирается ОС не «виндовс», а «андроид». Приставка должна поддерживать опции:
- вluetooth-канал;
- передача данных с помощью Wi-Fi.
Это позволит обойтись без контактной привязки гаджета с приставкой.
Bluetooth-канал
У подключения через Bluetooth присутствуют ограничения:
- у тестируемой частоты граница – 1 МГц;
- U щупа = 10 В;
- зона покрытия – 10 м.
Это ограничивает ресурс при применении подключений такого типа.
Передача данных с помощью Wi-Fi
Подключить осциллограф из планшета фирмы Linux или иного производителя допустимо посредством беспроводной сети – wi fi канала. Пакет измерений выдаётся на планшет без промедления и для неограниченного количества участников проекта. Наличие опции записи позволяет работать с информацией в версиях офлайн и онлайн. Дальность соединения выше, чем у Bluetooth.
USB осциллограф своими руками схема
Используя источник 5 В и подключение через шнур usb, можно самостоятельно собрать такую схему.
Схем USB осциллографа
Создание подобных приборов самостоятельно оправдано при измерениях, не требующих точных результатов. Подход к решению вопроса – это использование уже готовой полноценной приставки.
USB осциллограф своими руками
Вариант недорогого, а вернее очень дешевого двухканального осциллографа на процессоре STM32F103C8T6, будет рассмотрен в этой статье. Сразу оговорюсь что это приставка к компьютеру которая подключается к USB порту ПК. Вот некоторые характеристики осциллографа на STM32:
- Частота дискретизации (семплирование) — 461 kSps
- Входное напряжение — 6,6 В.
- Входное сопротивление — 20 кОм.
Как видим, осциллограф имеет нестандартное входное сопротивление, поэтому стандартные осциллографические щупы к нему не подойдут и для измерения напряжений свыше 6,6 В придется делать делитель с согласованием именно на 20 кОм. Еще небольшое пояснение по поводу частоты дискретизации. Многие ошибочно полагают что это и есть полоса пропускания. В действительности это вовсе не так. 461 kSps означает что осциллограф за одну секунду делает 461 тысячу замеров. Если подать на его вход сигнал, к примеру 1 кГц (период T=1/F; T=1 миллисекунда). За период в 1 миллисекунду осциллограф сделает 461000*0,001=461 измерение. Будем говорить что на период приходится 461 точка. Этого количества точек более чем достаточно чтобы четко отрисовать сигнал. Но если мы подадим на вход сигнал 200 кГц, период которого составляет 5 микросекунд, то уже на этот период мы получим 2,3 точку. Из 2 точек невозможно построить сигнал и оценить его параметры. Минимально необходимое число точек на период должно быть не менее 20. Поэтому максимальная частота при которой этим осциллографом можно будет рассмотреть сигнал будет 461/20= 23,5 кГц. Для звукового диапазона вполне подойдет. И не стоит забывать что это устройство не имеет гальванической развязки!!! Будьте внимательны если будете ремонтировать импульсные блоки питания!
Схема осциллографа представлена ниже. Оригинал схемы, печатной платы и прошивку вы можете скачать в конце статьи.
Как видно, схема состоит из одного процессора и его обвязки. Здесь особо нечего пояснять. Скажу только что на плате разведен только UART интерфейс для прошивки процессора. Я все же рекомендую развести SWD интерфейс и прошивать через него с помощью программатора STLINK. Это проще и быстрее. Но можно и так как на плате с помощью UART. Я вкратце опишу и тот и другой вариант. Для прошивки через UART нам потребуется любой переходник с USB в UART, из полно в продаже и стоят они не дорого. Подключаем переходник к плате по 3-х проводной шине RX, TX, GND. Затем скачиваем и устанавливаем программу STM Flash Loader Demo. Переводим плату в режим Boot. Для этого нажимаем и удерживаем кнопку Boot при нажатии кнопки Reset. Затем заходим в программу и выполняем пошаговые действия: выбираем номер COM порта, ожидаем соединения с платой, выбираем файл прошивки, ждем окончания процесса прошивки, закрываем прогу отключаем UART, и снимаем питание с платы. Теперь вариант с SWD. Подключаем программатор по 4 проводам: POWER, SWCLK, SWDIO, GND. (При этом питание на плату поступает с программатора). Качаем и ставим программу STM32 ST-Link Utility. При запуске программы она сама определит контроллер, вам останется лишь выбрать файл прошивки и запустить процесс прошивки.
И еще одно немаловажное замечание. Перед сборкой устройства, установите программную оболочку осциллографа на STM32 на свой ПК. Убедитесь что программа в принципе запускается. Были случаи когда программа просто не хотела запускаться на некоторых ПК и ноутбуках. С чем это связано — непонятно.
СКАЧАТЬ ПРОГРАММУ MINISCOPE V4
СКАЧАТЬ ДРАЙВЕР ДЛЯ MINISCOPE
СКАЧАТЬ ПРОШИВКУ ДЛЯ MINISCOPE
СКАЧАТЬ СХЕМУ И ПЛАТУ
Простой самодельный осциллограф из смартфона
Хороший осциллограф относится к слишком дорогому оборудованию для обычного радиолюбителя, для которого пайка микросхем и ремонт электроники является только хобби. При необходимости наблюдения за электрическими сигналами без получения сверх точных результатов вполне возможно обойтись самодельным устройством. Такой осциллограф подключается к экрану смартфона и работать под управлением специального бесплатного приложения. Его изготовление обойдется недорого и займет всего пару часов, с учетом сбора материалов.Материалы:
- штекер 3,5 мм от наушников;
- провода;
- термоусадка;
- стабилитрон 2,2В;
- резистор 2,2К;
- резистор 1К;
- тестовая клипса;
- корпус от маркера;
- мебельный гвоздик.
Сборка осциллографа
На рисунке представлена схема простейшего осциллографа — щупа для смартфона, которую необходимо повторить. Очень важно использовать резисторы с такой же цветовой маркировкой, как в примере, поскольку это позволит получить от устройства максимум чувствительности и точности.
Сборку следует начать с подготовки штекера мини-джек 3,5 мм от наушников. С него срезается пластиковая часть, после чего припаиваются 2 проводка как показано в схеме осциллографа.
Припаянные провода необходимо дополнительно закрепить и изолировать. Для этого будет достаточно применить 2 слоя термоусадочной трубки.
Далее к шляпке маленького мебельного гвоздика необходимо припаять одножильный провод.
Место пайки сверху изолируется термоусадкой. Гвоздик будет выполнять функцию плюсового электрода.
Провод с гвоздиком заводится в корпус маркера с удаленным стержнем. В результате электрод должен заменить пишущий наконечник фломастера. Также нужно завести проводок от разъема 3,5 мм в пробитое отверстие в заднем колпачке маркера.
Далее необходимо соединить параллельно и спаять стабилитрон с резистором 1К. К ним согласно схеме прибора припаивается резистор 2,2К.
В корпусе маркера ближе к пишущей части делается боковое отверстие. В него продевается отдельный провод, второй конец которого выходит из задней части фломастера.
К выведенному проводку припаивается стабилитрон с резистором 1К. Также к ним нужно присоединить жилу питания от разъема 3,5 мм. Важно соблюсти полярность, как на схеме. Вторая жила от мини-джека паяется к резистору 2,2К.
Провод с гвоздиком нужно подсоединить к оставшемуся концу резистора 2,2 К. Все соединения защищаются термоусадкой. После этого резисторы и стабилитрон необходимо спрятать в корпусе маркера, закрыв его задним колпачком.
На выходящий сбоку маркера провод, присоединенный к резистору 1К и стабилитрону нужно припаять тестовую клипсу.
После этого аппаратная часть устройства полностью готова.
Далее нужно установить на смартфон приложение Oscilloscope Pro 2. Осциллограф подключается к телефону и может использоваться по предназначению под управлением данной программы. Его тестовая клипса используется как масса, а электрод из гвоздика на маркере является плюсом. Приложение в связке с самодельным устройством позволяет настраивать пороги срабатывания, просматривать форму сигнала на дисплее и многое другое.
Смотрите видео
схемы, чертежи и лучшие проекты для постройки в домашних условиях
Хорошее, дорогое оборудование — роскошь для радиолюбителя. А китайские измерительные устройства, во-первых, низкокачественные, во-вторых, каких-то денег, да стоят.
Лайфхак для начинающих радиолюбителей и не только: как создать простейший адаптер небольшого диапазона частот, выполняющий функции цифрового осциллографа своими руками.
Все что Вам понадобится: самостоятельно спаянный делитель для осциллографа, звуковая карта, компьютер (ноутбук) и специальное программное обеспечение для визуализации сигнала на экране монитора.
Осциллограф применяется для ремонта и настройки различной аудио-аппаратуры и не только. Работает по принципу исследования параметров сигналов, подаваемых на вход прибора. Незаменим для настройки микросхем и диагностике датчиков.
Хотя, самостоятельно разработанный осциллограф будет значительно уступать профессиональному прибору, он прекрасно справится с такими функциями, как измерение параметров источников питания и усилителей.
Содержимое обзора:
Реализация
Для того чтобы соорудить осциллограф, необходимо собрать приставку, в которую должны быть включены 8 полупроводниковых диодов, 3 резистора и один аттенюатор, штекер для подключения к звуковой карте (LINE-IN), все как показано на схеме осциллографа своими руками.
Плата собрана именно по такому принципу, чтобы защитить звуковую карту от скачков напряжения, которые могут поступить на ее вход вместе с исследуемым цифровым сигналом.
Диоды не пропускают сигналы с амплитудой более 2В, а комбинация последовательно соединенных резисторов, образующих делитель, разрешает высокое входное напряжение.
Цифровой сигнал, подлежащий диагностике, поступает на входные клеммы приставки.
Собранная схема имеет линейный вход к звуковой карте через специальный штекер. Здесь важна длина соединительного провода.
Чем провод короче, тем меньше ошибок возникает при измерении сигнала, так как на низких измеряемых уровнях высока вероятность появления высокой погрешности искажений.
Лучше всего использовать двухжильный провод. На фото осциллографа, сделанного своими руками хорошо видно, что используется электрический провод в медной оплетке.
Программное обеспечение
Аппаратная часть готова, теперь необходимо подготовить программную среду, чтобы увидеть результаты измерений на экране компьютера. К счастью, сегодня существует множество программ, работающих с осциллографами.
Современные утилиты оснащены всеми необходимыми функциями для исследования и анализа сигналов, с которыми работает осциллограф.
Организация осциллографа через планшет
Сложность создания датчика для осциллографа через планшет заключается в отсутствии у последнего дискретного линейного входа. Поэтому дополнительным устройством служит телефонная гарнитура со входом для микрофона.
Разводка входных клемм у планшета и телефона должны совпадать. Тогда в клемму для микрофона подсоединяется источник сигнала по схеме, рассмотренной выше.
Так же, как в случае с компьютером (ноутбуком), необходимо установить специальное программное обеспечение для работы с полученным сигналом.
ОБРАТИТЕ ВНИМАНИЕ!
Щуп для компьютерного осциллографа
Даже имея массу различных промышленных кабелей, не лишним будет изготовить своими руками кабель-щуп для осциллографа, работающий на низкой частоте.
Преимуществом самодельного кабеля данного типа является его гибкость и небольшой размером, что очень удобно.
Минусом является то, что область его эксплуатации сводится к ремонту примитивной аудиотехники. Для использования самодельного осциллографа вполне достаточно будет «кабель-щупа».
Калибровка компьютерного осциллографа
Если что-то пошло нет так, можно выполнить ремонт осциллографа, сделанного своими руками, произведя его калибровку.
Для этого понадобятся один из следующих приборов, на выбор:
- Цифровой мультиметр.
- Аналоговый прибор, типа стрелочный тестер (ампервольт).
Перед диагностикой необходимо отключить эквалайзер звуковой карты. Переключатели на шкалах «Уровни линейных входов/выходов», «WAVE» и «Уровень записи» установить до максимальной отметки. Далее установить вход платы в режим (1:1).
ОБРАТИТЕ ВНИМАНИЕ!
Так как аналоговые приборы дают высокую погрешность измерений переменных напряжений, величиной до 1В, калибровку выполняем на напряжении максимальной амплитуды.
Фото осциллографа своими руками
ОБРАТИТЕ ВНИМАНИЕ!
Также рекомендуем просмотреть:
Просмотров: 1 684
Осциллограф своими руками, реально? Да! DSO138, осциллограф-конструктор
Недавно я уже делал обзор на один конструктор, сегодня продолжение небольшой серии обзоров о всяких самодельных вещах для начинающих радиолюбителей.Скажу сразу, это конечно не Тектроникс, и даже не DS203, но по своему интересная штучка, хоть по сути и игрушка.
Обычно перед тестами сначала вещь разбирают, здесь сначала надо собрать 🙂
На мой взгляд, осциллограф это «глаза» радиолюбителя. Этот прибор редко обладает высокой точностью, в отличие от мультиметра, но позволяет увидеть процессы в динамике, т.е. в «движении».
Иногда такой секундный «взгляд» может помочь больше, чем день ковыряния с тестером.
Раньше осциллографы были ламповыми, потом их сменили транзисторные, но отображался результат все равно на экране ЭЛТ. Со временем на смену им пришли их цифровые собратья, маленькие, легкие, ну а логическим продолжением стало появление и конструктора для сборки такого прибора.
Несколько лет назад я на некоторых форумах встречал попытки (порой удачные) разработать самодельный осциллограф. Конструктор конечно проще их и слабее по техническим характеристикам, но могу сказать с уверенностью, собрать его сможет даже школьник.
Разработан этот конструктор фирмой jyetech. Страничка этого прибора на сайте производителя.
Возможно специалистам этот обзор покажется излишне подробным, но практика общения с начинающими радилюбителями показала, что они так лучше воспринимают информацию.
В общем обо всем я расскажу немного ниже, а пока стандартное вступление, распаковка.
Прислали конструктор в обычном пакетике с защелкой, правда двольно плотном.
Как по мне, то для такого набора очень не помешала бы красивая упаковка. Не с целью защиты от повреждений, а с целю внешней эстетики. Ведь вещь должна быить приятной уже даже на этапе распаковки, ведь это конструктор.
В пакете находилось:
Инструкция
Печатная плата
Кабель для подключения к измеряемым цепям
Два пакетика с компонентами
Дисплей.
Технические характиристики устройства очень скромные, как по мне это скорее обучающий набор, чем измерительный прибор, хотя и при помощи даже этого прибора можно проводить измерения, пусть и простые.
Также в комплект входит подробная цветная инструкция на двух листах.
В инструкции расписана последовательность сборки, калибровки и краткое руководство по использованию.
Единственный минус, это все на английском, но картинки сделаны понятно, потому даже в таком варианте большая часть будет понятна.
В инструкции даже обозначены позиционные места элементов и сделаны «чекбоксы», где надо ставить галочку после завершения определенного этапа. Очень продуманно.
Отдельным листом идет табличка со списком SMD компонентов.
Стоит отметить, что существует как минимум два варианта устройства. На первой исходно распаян только микроконтроллер, на втором распаяны все SMD компоненты.
Первый вариант рассчитан на чуть более опытных пользователей.
В моем обзоре учавствует именно такой вариант, о существовании второго варианта я узнал позже.
Печатная плата двухсторонняя, как и в прошлом обзоре, даже цвет тот же.
Сверху нанесена маска с обозначением элементов, одна часть элементов обозначена полностью, вторая имеет только позиционный номер по схеме.
С обратной стороны маркировки нет, есть только обозначение перемычек и наименование модели устройства.
Плата покрыта маской, причем маска очень прочная (невольно пришлось проверить), на мой взгляд то что надо именно для начинающих, так как тяжело что то повредить в процессе сборки.
Как я выше писал, на плату нанесены обозначения устанавливаемых элементов, маркировка четкая, претензий к этому пункту нет.
Все контакты имеют лужение, паяется плата очень легко, ну почти легко, об этом нюансе в разделе сборки 🙂
Как я выше писал, на плате предустановлен микроконтроллер STM32F103C8
Это 32 битный микроконтроллер, базирующийся на ARM 32-bit Cortex™-M3 ядре.
Максимальная частота работы 72МГц, также он имеет 2 x 12-bit, 1 μs АЦП.
С обоих сторон платы указана ее модель, DSO138.
Вернемся к перечислению комплектующих.
Мелкие радиодетали, разъемы и т.п. упакованы в небольшие пакетики с защелкой.
Высыпаем на стол содержимое большого пакета. Внутри находятся разъемы, стойки и электролитические конденсаторы. Также в пакете находятся еще два маленьких пакетика 🙂
Раскрыв все пакеты мы видим довольно много радиодеталей. Хотя с учетом того что это цифровой осциллограф, то я ожидал больше.
Приятно то, что SMD резисторы подписаны, хотя как по мне, не мешало бы подписать и обычные резисторы, или дать в комплекте небольшую памятку по цветовой маркировке.
Дислей упакован в мягкий материал, как оказалось, он не скользит, потому болтаться в пакете не будет, а печатная плата защищает его от повреждений при транспортировке.
Но все равно, я считаю что нормальная упаковка не помешала бы.
В устройстве применен 2.4 дюйма TFT LCD индикатор со светодиодной подсветкой.
Разрешение экрана 320х240 пикселей.
Также в комплект входит небольшой кабель. Для подключения к осциллографу применен стандартный BNC разъем, на втором конце кабеля пара «крокодилов».
Кабель средней мягкости, «крокодилы» довольно большие.
Ну и вид на весь набор в полностью разложенном виде.
Теперь можно перейти к собственно сборке данного конструктора, а заодно попробовать разобраться, на сколько это сложно.
В прошлый раз я начинал сборку с резисторов, как с самых низких элементов на плате.
При наличии SMD компонентов сборку лучше начать с них.
Для этого я разложил все SMD компоненты на прилагаемом листе с указанием их номинала и позиционного обозначения на схеме.
Когда приготовился уже паять, то подумал, что элементы в слишком мелком, для начинающего, корпусе, вполне можно было применить резисторы размером 1206 вместо 0805. Разница в занимаемом месте незначительна, но паять проще.
Вторая мысль была — вот потеряю сейчас резистор и не найду. Ладно я, открою стол и достану второй такой резистор, но не у всех есть такой выбор. В данном случае производитель позаботился об этом.
Всех резисторов (жалко что и не микросхем) дал на один больше, т.е. в запас, очень предусмотрительно, зачет.
Дальше я немного расскажу о том, как паяю такие компоненты я, и как советую делать другим, но это просто мое мнение, естественно каждый может делать по своему.
Иногда SMD компоненты паяют при помощи специальной пасты, но она нечасто есть у начинающего радиолюбителя (да и у неначинающего тоже), потому я покажу как проще работать без нее.
Берем пинцетом компонент, прикладываем к месту установки.
Вообще часто я сначала промазываю место установки компонента флюсом, это облегчает пайку, но усложняет промывку платы, вымыть флюс из под компонента иногда бывает сложно.
Поэтому я в данном случае использовал просто 1мм трубчатый припой с флюсом.
Придерживая компонент пинцетом, набираем на жало паяльника капельку припоя и припаиваем одну сторону компонента.
Не страшно если пайка получилась некрасивая или не очень прочная, на данном этапе достаточно того, что компонент держится сам.
Затем повторяем операцию с остальными компонентами.
После того как мы таким образом закрепили все компоненты (или все компоненты одного номинала), можно спокойно припаять как надо, для этого поворачиваем плату так, чтобы уже припаянная сторона была слева и держа паяльник в правой руке (если вы правша), а припой в левой, проходим все незапаянные места. Если пайка второй стороны не устраивает, то поворачиваем плату на 180 градусов и аналогично пропаиваем другую сторону компонента.
Так получается проще и быстрее, чем запаивать каждый компонент индивидуально.
Здесь на фото видно несколько установленных резисторов, но пока припаянных только с одной стороны.
Микросхемы в SMD корпусе маркируются точно так же как в обычном, слева около метки (хотя обычно слева снизу если смотреть на маркировку) находится первый контакт, остальные считаются против часовой стрелки.
На фото место для установки микросхемы и пример, как она должна устанавливаться.
С микросхемами поступаем полностью аналогично примеру с резисторами.
Выставляем микросхему на площадках, припаиваем любой один вывод (лучше крайний), немного корректируем положение микросхемы (при необходимости) и запаиваем остальные контакты.
С микросхемой- стабилизатором можно поступить по разному, но я советую припаивать сначала лепесток, а потом контактные площадки, тогда микросхема точно будет ровно прилегать к плате.
Но никто не запрещает припаять сначала крайний вывод, а потом все остальные.
Все SMD компоненты установлены и припаяны, осталось несколько резисторов, по одному каждого номинала, откладываем их в пакетик, может когда нибудь пригодятся.
Переходим к монтажу обычных резисторов.
В прошлом обзоре я рассказывал немного о цветовой маркировке. В этот раз я скорее посоветую просто измерить сопротивление резисторов при помощи мультиметра.
Дело в том, что резисторы очень мелкие, а при таких размерах цветовая маркировка очень плохо читается (чем меньше площадь закрашенного участка, тем сложнее определить цвет).
Изначально я искал в инструкции список номиналов и позиционных обозначений, но не нашел, так как искал их в виде таблички, а уже после монтажа выяснилось, что они есть на картинках, причем с чекбоксами для отметки установленных позиций.
Из-за моей невнимательности мне пришлось сделать свою табличку, по которой я рядом разложил устанавливаемые компоненты.
Слева отдельно виден резистор, при составлении таблички он был лишним, потому я оставил его под конец.
С резисторами поступаем похожим образом как в прошлом обзоре, формуем выводы при помощи пинцета (либо специальной оправки) так, чтобы резистор легко становился на свое место.
Будье внимательны, позиционные обозначения компонетов на плате могут быть не только надписаны, а и ПОДписаны и это может сыграть с вами злую шутку, особенно если на плате присутствует много компонентов в один ряд.
Вот тут вылез небольшой минус печатной платы.
Дело в том, что отверстия под резисторы имеют очень большой диаметр, а так как монтаж относительно плотный, то я решил выводы загибать, но несильно и потому в таких отверстиях держатся они не очень хорошо.
Из-за того, что резисторы держались не очень хорошо, я рекомендую не набивать сразу все номиналы, а установить половину или треть, потом запаять их и установить остальные.
Не бойтесь сильно обкусывать выводы, двухсторонняя плата с металлизацией прощает такие вещи, всегда можно припаять резистор хоть сверху, чего не сделаешь при односторонней печатной плате.
Все, резисторы запаяны, переходим к конденсаторам.
Я поступил с ними также как с резисторами, разложив согласно табличке.
Кстати у меня все таки остался один лишний резистор, видимо случайно положили.
Несколько слов о маркировке.
Такие конденсаторы маркируются также как и резисторы.
Первые две цифры — число, третья цифра — количество нулей после числа.
Получившийся результат равен емкости в пикофарадах.
Но на этой плате есть конденсаторы, не попадающие под эту маркировку, это номиналы 1, 3 и 22пФ.
Они маркируются просто указанием емкости так как емкость меньше 100пФ, т.е. меньше трехзначного числа.
Сначала запаиваю мелкие конденсаторы согласно позиционным обозначениям (тот еще квест).
С конденсаторами емкостью 100нФ я немного ступил, не добавив их в табличку сразу, пришлось делать это потом от руки.
Выводы конденсаторов я также загибал не полностью, а примерно под 45 градусов, этого вполне достаточно чтобы компонент не выпал.
Кстати, на этом фото видно, что пятачки, соединенные с общим контактом платы, выполнены правильно, есть кольцевой промежуток для уменьшения теплоотдачи, это облегчает пайку таких мест.
Как то я немного расслабился на этой плате и вспомнил о дросселях и диодах уже после запаивания керамических конденсаторов, хотя лучше было их впаять перед ними.
Но особо ситуацию это не изменило, потому перейдем к ним.
В комплекте к плате дали три дросселя и два диода (1N4007 и 1N5815).
С диодами все ясно, место подписано, катод обозначен белой полосой на самом диоде и на плате, перепутать очень сложно.
С дросселями бывает немного сложнее, они иногда также имеют цветовую маркировку, благо в данном случае все три дросселя имеют один номинал 🙂
На плате дроссели обозначаются буквой L и волнистой линией.
На фото участок платы с запаянными дросселями и диодами.
В осциллографе применено два транзистора разной проводимости и две микросхемы стабилизаторы, на разную полярность. В связи с этим будьте внимательны при монтаже, так как обозначение 78L05 очень похоже на 79L05, но если поставить наоборот, то вы скорее всего поедете за новыми.
С транзисторами немного проще, хоть на плате и указана просто проводимость без указания типа транзистора, но тип транзистора и его позиционное обозначение можно без труда посмотреть по схеме или карте установки компонентов.
Выводы здесь формовать заметно тяжелее, так как отформовать надо все три вывода, лучше не спешить, чтобы не отломать выводы.
Формуются выводы одинаково, это упрощает задачу.
На плате положение транзисторов и стабилизаторов обозначено, но на всякий случай я сделал фото, как они должны быть установлены.
В комплекте был мощный (относительно) дроссель, который используется в преобразователе для получения отрицательной полярности и кварцевый резонатор.
Им выводы формовать не надо.
Теперь о кварцевом резонаторе, он изготовлен под частоту 8МГц, полярности также не имеет, но под него лучше подложить кусочек скотча, так как корпус у него металлический и он лежит на дорожках. Плата покрыла защитной маской, но я как то привык делать какую нибудь подложку в таких случаях, для безопасности.
не удивляйтесь, что я в начале указал что процессор имеет максимальную частоту 72МГц, а кварц стоит всего на 8, внутри процессора есть как делители частоты, так иногда и умножители, потому ядро вполне может работать например на частоте 8х8=64МГц.
Почему то на плате контакты дросселя имеют квадратную и круглую форму, хотя сам по себе дроссель — элемент неполярный, потому просто впаиваем его на место, выводы лучше не загибать.
В комплекте дали довольно много электролитических конденсаторов, все они имеют одинаковую емкость в 100мкФ и напряжение в 16 Вольт.
Их надо запаивать обязательно с соблюдением полярности иначе возможны пиротехнические эффекты 🙂
Длинный вывод конденсатора это плюсовой контакт. На плате присутствует маркировка полярности как около соответствующего вывода, так и рядом с кружком, отмечающим положение конденсатора, довольно удобно.
Отмечен плюсовой вывод. Иногда маркируют минусовой, в этом случае примерно половина кружочка заштриховывается. А еще есть такой производитель компьютерного железа как Асус, который заштриховывает плюсовую сторону, потому всегда надо быть внимательным.
Потихоньку мы подошли к довольно редкому компоненту, подстроечному конденсатору.
Это конденсатор, емкость которого можно изменять в небольших пределах, например 10-30пФ, обычно и емкость этих конденсаторов невелика, до 40-50пФ.
Вообще это элемент неполярный, т.е. формально не имеет значения как его впаивать, но иногда имеет значение как его впаивать.
Конденсатор содержит шлиц под отвертку (типа головки маленького винтика), который имеет электрическое соединение с одним из выводов. ТАк вот в данной схеме один вывод конденсатора подключен к общему проводнику платы, а второй к остальным элементам.
Чтобы было меньше влияние отвертки на параметры цепи, надо впаивать его так, чтобы вывод соединенный со шлицом соединялся с общим проводом платы.
На плате указана маркировка как впаивать, а дальше по ходу обзора будет и фотка, где это видно.
Кнопки и переключатели.
Ну здесь тяжело что то сделать неправильно, так как очень тяжело их вставить как нибудь не так 🙂
Скажу лишь, что выводы корпуса переключателей надо припаять к плате.
В случае переключателя это не просто добавит прочности, а и соединит корпус переключателя с общим контактом платы и корпус переключателя будет работать как экран от помех.
Разъемы.
Самая сложная часть в плане пайки. Сложная не точностью или малогабаритностью компонента, а наоборот, иногда место пайки тяжело прогреть, потому для BNC разъема лучше взять паяльник помощнее.
На фото можно увидеть —
Пайка BNC разъема, дополнительного разъема питания (единственный разъем здесь, который можно поставить наоборот) и USB разъема.
С индикатором, а вернее с разъемами для его подключения, вышла небольшая неприятность.
В комплекте забыли положить пару двойных контактов (пинов), они тут используются для закрепления стороны индикатора, обратной сигнальному разъему.
Но посмотрев на распиновку сигнального разъема я понял, что некоторые контакты можно запросто откусить и использовать вместо недостающих.
Я мог открыть ящик стола и достать оттуда такой разъем, но это было бы неинтересно и в какой то степени нечестно.
Запаиваем гнездовые (так называемые — мамы) части разъемов на плату.
На плате присутствует выход встроенного генератора 1КГц, он нам потом понадобится, хоть эти два контакта и соединяются друг с другом, но мы все равно впаиваем перемычку, она будет удобна для подключения «крокодила» сигнального кабеля.
Для перемычки удобно использовать обкушенный вывод электролитического конденсатора, они длинные и довольно жесткие.
Находится эта перемычка слева от разъема питания.
Также на плате присутствует пара важных перемычек.
Одну из них, под названием JP3 надо закоротить сразу, делается это при помощи капельки припоя.
Со второй перемычкой, немножко сложнее.
Сначала надо подключить мультиметр в режиме измерения напряжения в контрольной точке, находящейся над лепестком микросхемы-стабилизатора. Второй щуп подключается к любому контакту соединенному с общим контактом платы, например к USB разъему.
На плату подается питание и проверяется напряжение в контрольной точке, если все в порядке, то там должно быть около 3.3 Вольта.
После этого перемычка JP4, находящаяся чуть левее и ниже стабилизатора, также соединяется при помощи капли припоя.
На обратной стороне платы есть еще четыре перемычки, их трогать не надо, это технологические перемычки, для диагностики платы и перевода процессора в режим прошивки.
Возвращаемся к дисплею. Как я выше писал, мне пришлось откусить несколько контактных пар, чтобы применить их взамен отсутствующих.
Но при сборке я решил выкусить не крайние пары, а как бы из середины, а крайнюю запаять на место, так будет сложнее перепутать что то при установке.
Хоть на дисплее и наклеена защитная пленка, я бы рекомендовал при припаивании разъема накрыть экран куском бумаги, в таком случае капли флюса, который кипит при пайке, будут отлетать на бумагу, а не на экран.
Все, можно подавать питание и проверять 🙂
Кстати, один из диодов, который мы запаивали ранее, служит для защиты электроники от неправильного подключения питания, со стороны разработчика это полезный шаг, так как спалить плату неправильной полярностью можно в секунду.
На плате указано питание 9 Вольт, но при этом оговорен диапазон до 12 Вольт.
В тестах я пита плату от 12 Вольт блока питания, но попробовал и от двух последовательно соединенных литиевых аккумуляторов, разница была только в чуть меньшей яркости подсветки экрана, думаю что применив стабилизатор 5 Вольт с низким падением и убрав защитный диод (или подключив его параллельно питанию и установив предохранитель), можно вполне спокойно питать плату от двух литиевых аккумуляторов.
Как вариант, использовать преобразователь питания 3.7-5 Вольт.
Так как запуск платы прошел успешно, то перед настройкой плату лучше промыть.
Я пользуюсь ацетоном, хотя он запрещен к продаже, но есть небольшие запасы, как вариант еще использовали толуол, ну или в крайнем случае медицинский спирт.
Но плату надо промыть обязательно, целиком «купать» ее не надо, достаточно пройтись снизу ваткой.
Особое внимание надо уделить переключателям режимов работы и входному разъему.
Хоть частоты и не очень высокие, но паразитное сопротивление, которое дает флюс, может сделать плохое дело.
В конце ставим плату «на ноги», используя комплектные стойки, они конечно чуть меньше чем надо и немного болтаются, но все равно так удобнее, чем просто класть на стол, не говоря о том, что выводы деталей могут поцарапать крышку стола, ну и так ничего не попадает под плату и не закоротит ничего под ней.
Первая проверка от встроенного генератора, для этого подключаем «крокодил» с красным изолятором к перемычке около разъема питания, черный провод никуда подключать не надо.
Чуть не забыл, несколько слов о назначении переключателей и кнопок.
Слева расположены три трехпозиционных переключателя.
Верхний переключает режим работы входа.
Заземлен
Режим работы без учета постоянной составляющей, или АС, или режим работы с закрытым входом. Хорошо подходит для измерения переменного тока.
Режим работы с возможностью измерения постоянного тока, или режим работы с открытым входом. Позволяет проводить измерения с учетом постоянной составляющей напряжения.
Второй и третий переключатели позволяют выбрать масштаб по оси напряжения.
Если выбран 1 Вольт, то это означает, что в этом режиме размах в одну масштабную клетку экрана будет равен напряжению в 1 Вольт.
При этом средний переключатель позволяет выбрать напряжение, а нижний множитель, потому при помощи трех переключателей можно выбрать девять фиксированных уровней напряжения от 10мВ до 5 Вольт на клетку.
Справа расположены кнопки управления режимами развертки и режима работы.
Описание кнопок сверху вниз.
1. При коротком нажатии включает режим HOLD, т.е. фиксация показаний на дисплее. при длинном (более 3 секунд) включает или выключает режим цифрового вывода данных параметра сигнала, частоту, период, напряжения.
2. Кнопка увеличения выбранного параметра
3. Кнопка уменьшения выбранного параметра.
4. Кнопка перебора режимов работы.
Управление временем развертки, диапазон от 10мкс до 500сек.
Выбор режима работы триггера синхронизации, Авто, нормальный и ждущий.
Режим захвата сигнала синхронизации триггером, по фронту или тылу сигнала.
Выбор уровня напряжения захвата сигнала триггера синхронизации.
Прокрутка осциллограммы по горизонтали, позволяет просмотреть сигнал «за пределами экрана»
Установка позиции осциллограммы по вертикали, помогает при измерении напряжений сигнала и когда осциллограмма не влазит на экран…
Кнопка сброса, просто перезагрузка осциллографа, как выяснилось иногда бывает очень удобна.
Рядом с кнопкой есть зеленый светодиод, он моргает когда осциллограф синхронизировался.
Все режимы при выключении прибора запоминаются и включается он потом в том режиме, в котором его выключили.
Еще на плате есть разъем USB, но как я понял, он в этом варианте не используется, при подключении к компьютеру выдает что обнаружено неизвестное устройство.
Также есть контакты для перепрошивки устройства.
Все режимы, выбранные кнопками или переключателями, дублируются на экране осциллографа.
Версию ПО я не обновлял, так как стоит последняя на текущий момент 113-13801-042
Настройка прибора очень проста, помогает в этом встроенный генератор.
Скорее всего при подключении к встроенному генератору прямоугольных импульсов вы увидите следующую картину, вместо ровных прямоугольников будет либо «завал» угла верха/низа, вниз или вверх.
Корректируется это вращением подстроечных конденсаторов.
Конденсаторов два, в режиме 0.1 Вольта подстраиваем С4, в режиме 1 Вольт соответственно С6. В режиме 10мВ корректировка не производится.
Регулировкой необходимо добиться ровных прямоугольных импульсов на экране, как это показано на фотографии.
Я посмотрел этот сигнал другим осциллографом, на мой взгляд он достаточно «ровный» для калибровки данного осциллографа.
Хоть конденсаторы и установлены правильно, но даже в таком варианте небольшое влияние от металлической отвертки присутствует, пока удерживаем жало на регулируемом элементе, результат один, стоит убрать жало, результат чуть меняется.
В таком варианте либо подкручивать маленькими сдвигами, либо использовать пластмассовую (диэлектрическую) отвертку.
Мне такая отвертка досталась с какой то камерой Хиквижн.
С одной стороны у нее крестовое жало, причем срезанное, именно для таких конденсаторов, с другой — прямое.
Так как данный осциллограф больше прибор для изучения принципов работы, чем действительно полноценный прибор, то и проводить полноценное тестирование я не вижу смысла, хотя основные вещи покажу и проверю.
1. Совсем забыл, иногда при работе внизу экрана вылазит реклама производителя 🙂
2. Отображения цифровых значений параметра сигнала, подан сигнал от встроенного генератора прямоугольных импульсов.
3. Вот такой собственный шум входа осциллографа, в интернет я встречал упоминания об этом, а так же о том, что новая версия имеет меньший уровень шумов.
4. Для проверки, что это действительно шум аналоговой части, а не наводки, я перевел осциллограф в режим с закороченным входом.
1. Переключил время развертки в режим 500сек на деление, как по мне, ну это уж совсем для экстремалов.
2. Уровень входного сигнала можно менять от 10мВ на клетку
3. До 5 Вольт на клетку.
4. Прямоугольный сигнал частотой 10КГц с генератора осциллографа DS203.
1. Прямоугольный сигнал частотой 50КГц с генератора осциллографа DS203. Видно что на такой частоте сигнал уже сильно искажен. 100КГц подавать уже не имеет особого смысла.
2. Синусоидальный сигнал частотой 20КГц с генератора осциллографа DS203.
3. Сигнал треугольной формы частотой 20КГц с генератора осциллографа DS203.
4. Пилообразный сигнал частотой 20КГц с генератора осциллографа DS203.
Дальше я решил немного посмотреть как ведет себя прибор при работе с синусоидальным сигналом, поданным от аналогового генератора и сравнить его со своим DS203
1. Частота 1КГц
2. Частота 10КГц
1. Частота 100КГц, в конструкторе нельзя выбрать время развертки меньше 10мс, потому только так 🙁
2. А вот так может выглядеть синусоидальный сигнал частотой 20КГц, поданный с DS203, но в другом режиме входного делителя. Выше был скриншот такого сигнала, но поданный в положении делителя 1 Вольт х 1, здесь сигнал в режиме 0.1 Вольт х 5.
Ниже видно как выглядит этот сигнал при подаче на DS203
Сигнал 20КГц, поданный с аналогового генератора.
Сравнительное фото двух осциллографов, DSO138 и DS203. Оба подключены к аналоговому генератору синуса, частота 20КГц, на обоих осциллографах выставлен одинаковый режим работы.
Резюме.
Плюсы
Интересная обучающая конструкция
Качественно изготовленная печатная плата, прочное защитное покрытие.
Собрать конструктор под силу даже начинающему радиолюбителю.
Продуманная комплектация, порадовали запасные резисторы в комплекте.
В инструкции хорошо расписан процесс сборки.
Минусы
Небольшая частота входного сигнала.
Забыли положить в комплект пару контактов для крепления индикатора
Простенькая упаковка.
Мое мнение. Скажу коротко, был бы у меня в детстве такой конструктор, я был бы наверное очень счастлив, даже несмотря на его недостатки.
А если длинно, то конструктор приятно порадовал, я считаю его хорошей базой как в получении опыта сборки и наладки электронного устройства, так и в опыте работы с очень важным для радиолюбителя прибором — осциллографом. Пусть простым, пусть без памяти и с низкой частотой, но это куда лучше возни с аудиокартами.
Как серьезный прибор считать его конечно нельзя, но он таким и не позиционируется, а как конструктор, более чем.
Зачем я заказал этот конструктор? Да просто было интересно, ведь все мы любим игрушки 🙂
Надеюсь что обзор был интересен и полезен, жду предложений по поводу вариантов тестирования 🙂
Ну и как всегда, дополнительные материалы, прошивки, инструкции, исходники, схема, описание — скачать.
Как дополнение, схема отдельно.
Схема
Товар предоставлен для написания обзора магазином. Обзор опубликован в соответствии с п.18 Правил сайта.
Leave a Reply