Разное

Самодельные блоки питания: ЛУЧШИЙ САМОДЕЛЬНЫЙ БЛОК ПИТАНИЯ

Содержание

ЛУЧШИЙ САМОДЕЛЬНЫЙ БЛОК ПИТАНИЯ

Доброго времени суток форумчане и гости сайта Радиосхемы! Желая собрать приличный, но не слишком дорогой и крутой блок питания, так чтоб в нём всё было и ничего это по деньгам не стоило, перебрал десятки вариантов. В итоге выбрал лучшую, на мой взгляд, схему с регулировкой тока и напряжения, которая состоит всего из пяти транзисторов не считая пары десятков резисторов и конденсаторов. Тем не менее работает она надёжно и имеет высокую повторяемость. Эта схема уже рассматривалась на сайте, но с помощью коллег удалось несколько улучшить её.

Я собрал эту схему в первоначальном виде и столкнулся с одним неприятным моментом. При регулировке тока не могу выставить 0.1 А — минимум 1.5 А при R6 0.22 Ом. Когда увеличил сопротивление R6 до 1.2 Ом — ток при коротком замыкании получился минимум 0.5 А. Но теперь R6 стал быстро и сильно нагреваться. Тогда задействовал небольшую доработку и получил регулировку тока намного более шире. Примерно от 16 мА до максимума. Также можно сделать от 120 мА если конец резистора R8 перекинуть в базу Т4. Суть в том, что до падения напряжения резистора добавляется падения перехода Б-Э и это дополнительное напряжение позволяет раньше открыть Т5, и как следствие — раньше ограничить ток.

Рекомендуем такой вариант схемы с мультисима. Добавлен резистор (R9 100 Ом) в базу Т5 (Q5) для ограничения тока при крайнем левом положении резистора R8 (470 Ом). Регулирует от 10 мА до максимума.

На базе этого предложения провёл успешные испытания и в итоге получил простой лабораторный БП. Выкладываю фото моего лабораторного блока питания с тремя выходами, где:

  • 1-выход 0-22в
  • 2-выход 0-22в
  • 3-выход +/- 16в

Также помимо платы регулировки выходного напряжения устройство было дополнено платой фильтра питания с блоком предохранителей. Что получилось в итоге — смотрите далее:

Отдельная благодарность за улучшение схемы — Rentern. Сборка, корпус, испытания — aledim.

   Форум по БП

   Форум по обсуждению материала ЛУЧШИЙ САМОДЕЛЬНЫЙ БЛОК ПИТАНИЯ



Схемы самодельных блоков питания


Как из бесперебойника (UPS, ИБП) сделать лабораторный блок питания (0-12В, 5А)

Как неисправный или устаревший источник бесперебойного питания (UPS) переделать в лабораторный источник питания для радиолюбителя. Основное назначение источников бесперебойного питания (ИБП) — непродолжительное питание различной офисной техники (в первую очередь, компьютеров) в аварийных …

4 3980 1

Мощный линейный источник питания на полевых транзисторах (13В, 20А)

Схема мощного источника питания на полевых транзисторах, обеспечивающего стабилизированное напряжение 13В при токах до 20А и больше.

3 9039 4

Схема мощного двухполярного стабилизатора напряжения для УМЗЧ (41В, 4А)

Описание и принципиальная схема мощного двуполярного стабилизатора напряжения для питания усилителей мощности звуковой частоты, 2 х 41В, ток 4А. Компенсационные стабилизаторы напряжения непрерывного действия последовательного типа обладают невысоким КПД, однако большим коэффициентом стабилизации …

1 1689 0

Стабилизированный лабораторный блок питания на 1,3-30V при токе 0-5A

Приводится принципиальная схема самодельного блока питания позволяющего получить напряжения от 1,3В до 30В при токах от 0А до 5А, работает в режиме стабилизации напряжения и тока.

3 6858 0

Схема лабораторного блока питания для налаживания усилителей ЗЧ

В радиолюбительской практике нередки случаи выхода из строя мощного УМЗЧ в процессе его налаживания или ремонта. При этом, как правило, бывают повреждены самые дорогостоящие детали — мощные выходные транзисторы. Чтобы избежать таких последствий, необходим специализированный блок питания …

0 1966 0

Сетевой блок питания на 1,5В для электромеханических часов

Электромеханические часы обычно питаются от элемента на 1,5V. Его можно заменить сетевым источником, схема которого показана здесь. В ней в качестве стабилитрона используется ИК-светодиод с прямым напряжением около 1,5V. Механизм часов питается от этого напряжения. Рис. 1. Схема сетевого …

0 1568 0

Схемы микромощных сетевых блоков питания на основе микросхемы PT4515

Три варианта сетевых бестрансформаторных микромощных источников питания с выходным током единицы-десятки миллиампер на основе микросхемы РТ4515. Эта микросхема широко применяется в светодиодных лампах. Для управления симисторами, три-нисторами, полевыми транзисторами и т. п., коммутирующими …

1 14514 0

Схема импульсного сетевого блока питания для усилителей НЧ на 100-500Вт (IR2153, IR2155)

Для получения полноценного усилителя мощности НЧ требуется хороший источник питания, приведена схема простого блока питания для УМЗЧ. От параметров источника питания качество звучания зависит не чуть не меньше, чем от самого усилителя и относится халатно к его изготовлению не следует …

3 7235 4

Бестрансформаторный источник питания (IRF730, 7805, VN2460N8, SR037)

Принципиальная схема простого бестрансформаторного блока питания из доступных деталей, два варианта. В своих конструкциях радиолюбители очень часто применяют бестрансформаторные маломощные источники питания. Обычно, они представляют собой своеобразный симбиоз параметрического стабилизатора …

0 2519 0

Блок питания на 9В с таймером (CD4069, NJM4020)

Схема простого блока питания, который может отключаться от сети через некоторое время после включения. Это время устанавливается плавно (переменным резистором) в пределах от 10 минут до 2 часов. Блок можно использовать там, где нужно выключать какую-то батарейную аппаратуру, питающуюся от сетевого …

1 1024 0

1 2  3  4  5  … 14 

Радиодетали, электронные блоки и игрушки из китая:

Самодельный лабораторный блок питания

Изготовление самодельного лабораторного блока питания из подручных доступных компонентов.


Для настройки самодельной электроники и не только самодельной, требуется источник питания. Для каждого устройства требуется свое напряжения питания. У каждого мастера должен быть универсальный блок питания, идеальный вариант это лабораторный блок питания. У меня есть только регулируемый блок питания. На нем нет возможности установить ограничение тока. Выход есть, соберу свой ЛБП.

Комплектующие

Лежал у меня алюминиевый корпус. Насколько я помню, корпус от регулятора паяльника времен СССР. Он крепкий и легкий.

Трансформатор от старого телевизора, может еще от чего. Я сделал отвод от 22-х вольт. Обмотки были рассчитаны на 27 вольт, мне показалось много. Намотал отдельную обмотку для питания Вольт-Ампер метра. Напряжение порядка 7-8 вольт. Сетевая обмотка соответственно 220 вольт.

Диодный мост самодельный. Состоит из диодов Д242. Диоды установлены на радиаторы.

После моста установлю электролитический конденсатор. Емкость и рабочее напряжение видны на фото.

Вольт-Ампер метр из Китая. Точность довольно хорошая. На крайний случай есть подстроечные резисторы, которыми можно подкорректировать значения.

Регулировать напряжение, и ток буду при помощи китайского модуля. Главное, не превышать входящее напряжение выше 30 вольт. На модуле установлен маломощный стабилизатор с максимальным входным напряжением 30 вольт.

Выходные клеммы советские. Одну пометил красным лаком, будет плюсовой.

Передняя панель отсутствует. Сделаю из композитного пластика.

Сборка

Собирать буду по простой схеме. В первичной цепи трансформатора установил выключатель и предохранитель. С вторички напряжение поступает на диодный мост и электролитический конденсатор. С них напряжение поступает на понижающий модуль. С модуля, через Вольт-Ампер метр поступает на выходные клеммы. Подстроечные резисторы выпаиваем и на проводах выносим за пределы платы, но устанавливаем регулируемые. Нижняя часть схемы, с линейным стабилизатором, служит для питания Вольт-Ампер метра.

Схема регулируемого блока питания

Расставляю силовые элементы на нижней части корпуса. Конденсатор установил между трансформатором и диодным мостом.

Соединяем трансформатор, диодный мост и понижающий модуль. Витые провода пойдут на регулировочные резисторы.


Так получилась часть для питания приборчика. Диодный мостик, электролитический конденсатор и стабилизатор на 5 вольт.

На задней панели вырезаю отверстие под сетевой разъем. Такой разъем можно снять со старого компьютерного блока питания.

На заготовке из композитного пластика, вырезаю все необходимые отверстия. Сетевой выключатель клавишный, до последнего момента не знал что установить. Разметку производил по защитной пленке, ее при установке сниму.

Распаиваю резисторы. Подключаю выключатель. Распаял провода на Вольт-Ампер метр. В разрыве предохранитель, на задней панели.

Устанавливаем все элементы передней панели на свои места. Защитная пленка снята.

Ручки на резисторы нашел разных цветов. Верхнюю крышку покрасил. Можно испытать. Диапазон регулировки получился от 1 до 27 вольт. Ток на короткое замыкание получился около 9 ампер.

Такой ЛБП получился. Для всех моих потребностей более чем достаточно.

Видео по сборке

Блок питания 1,5в, 3,3в, 5в, 12в, 24в, самому собрать из подручных деталей мощный блок. Схемы блоков питания. Сборка простого блока питания.

Как самому собрать простой блок питания и мощный источник напряжения.
Порой приходится подключать различные электронные приборы, в том числе самодельные, к источнику постоянного напряжения 12 вольт. Блок питания несложно собрать самостоятельно в течении половины выходного дня. Поэтому нет необходимости приобретать готовый блок, когда интереснее самостоятельно изготовить необходимую вещь для своей лаборатории.
Блок питания 12в

 

Каждый, кто захочет сможет изготовить 12 — ти вольтовый блок самостоятельно, без особых затруднений.
Кому-то необходим источник для питания усилителя, а кому запитать маленький телевизор или радиоприемник …

Шаг 1: Какие детали необходимы для сборки блока питания …
Для сборки блока, заранее подготовьте электронные компоненты, детали и принадлежности из которого будет собираться сам блок ….
-Монтажная плата.
-Четыре диода 1N4001, или подобные. Мост диодный.
-Стабилизатор напряжения LM7812.
-Маломощный понижающий трансформатор на 220 в, вторичная обмотка должна иметь 14В — 35В переменного напряжения, с током нагрузки от 100 мА до 1А, в зависимости от того какую мощность необходимо получить на выходе.
-Электролитический конденсатор емкостью 1000мкФ — 4700мкФ.
-Конденсатор емкостью 1uF.
-Два конденсатора емкостью 100nF.
-Обрезки монтажного провода.
-Радиатор, при необходимости.
Если необходимо получить максимальную мощность от источника питания, для этого необходимо подготовить соответствующий трансформатор, диоды и радиатор для микросхемы.
Шаг 2: Инструменты ….
Для изготовления блока необходимы инструменты для монтажа:
-Паяльник или паяльная станция
-Кусачки
-Монтажный пинцет
-Кусачки для зачистки проводов
-Устройство для отсоса припоя.
-Отвертка.
И другие инструменты, которые могут оказаться полезными.
Шаг 3: Схема и другие …

 

Для получения 5 вольтового стабилизированного питания, можно заменить стабилизатор LM7812 на LM7805.
Для увеличения нагрузочной способности более 0,5 ампер, понадобится радиатор для микросхемы, в противном случае он выйдет из строя от перегрева.

Однако, если необходимо получить несколько сотен миллиампер (менее, чем 500 мА) от источника, то можно обойтись без радиатора, нагрев будет незначительным.
Кроме того, в схему добавлен светодиод, чтобы визуально убедиться, что блок питания работает, но можно обойтись и без него.

 

Блок питания 12в 30а

Схема блока питания 12в 30А.
При применении одного стабилизатора 7812 в качестве регулятора напряжения и нескольких мощных транзисторов, данный блок питания способен обеспечить выходной ток нагрузки до 30 ампер.
Пожалуй, самой дорогой деталью этой схемы является силовой понижающий трансформатор. Напряжение вторичной обмотки трансформатора должно быть на несколько вольт больше, чем стабилизированное напряжение 12в, чтобы обеспечить работу микросхемы. Необходимо иметь в виду, что не стоит стремиться к большей разнице между входным и выходным значением напряжения, так как при таком токе теплоотводящий радиатор выходных транзисторов значительно увеличивается в размерах.

В трансформаторной схеме применяемые диоды должны быть рассчитаны на большой максимальный прямой ток, примерно 100А. Через микросхему 7812 протекающий максимальный ток в схеме не составит больше 1А.
Шесть составных транзисторов Дарлингтона типа TIP2955 включенных параллельно, обеспечивают нагрузочный ток 30А (каждый транзистор рассчитан на ток 5А), такой большой ток требует и соответствующего размера радиатора, каждый транзистор пропускает через себя одну шестую часть тока нагрузки.
Для охлаждения радиатора можно применить небольшой вентилятор.
Проверка блока питания
При первом включении не рекомендуется подключать нагрузку. Проверяем работоспособность схемы: подсоединяем вольтметр к выходным клеммам и измеряем величину напряжения, оно должно составлять 12 вольт, или значение очень близко к нему. Далее подключаем нагрузочный резистор 100 Ом, мощностью рассеивания 3 Вт, или подобную нагрузку — типа лампы накаливания от автомобиля. При этом показание вольтметра не должно изменяться. Если на выходе отсутствует напряжение 12 вольт, отключите питание и проверьте правильность монтажа и исправность элементов.
Перед монтажом проверьте исправность силовых транзисторов, так как при пробитом транзисторе напряжение с выпрямителя прямиком попадает на выход схемы. Чтобы избежать этого, проверьте на короткое замыкание силовые транзисторы, для этого измерьте мультиметром по раздельности сопротивление между коллектором и эмиттером транзисторов. Эту проверку необходимо провести до монтажа их в схему.

Блок питания 3 — 24в

Схема блока питания выдает регулируемое напряжение в диапазоне от 3 до 25 вольт,  при токе максимальной нагрузки до 2А, если уменьшить токоограничительный резистор 0,3 ом, ток может быть увеличен до 3 ампер и более.
Транзисторы 2N3055 и 2N3053 устанавливаются на соответствующие радиаторы, мощность ограничительного резистора должно быть не менее 3 Вт. Регулировка напряжения контролируется ОУ LM1558 или 1458. При использовании ОУ 1458 необходимо заменить элементы стабилизатора, подающие напряжение с вывода 8 на 3 ОУ с делителя на резисторах номиналом 5.1 K.
Максимальное постоянное напряжение для питания ОУ 1458 и 1558 36 В и 44 В соответственно. Силовой трансформатор должен выдавать напряжение, как минимум на 4 вольт больше, чем стабилизированное выходное напряжение. Силовой трансформатор в схеме имеет на выходе напряжение 25.2 вольт переменного тока с отводом посредине. При переключении обмоток выходное напряжение уменьшается до 15 вольт.

Схема блока питания на 1,5 в

Схема блока питания для получения напряжения 1,5 вольта, используется понижающий трансформатор, мостовой выпрямитель со сглаживающим фильтром и микросхема LM317.

Схема регулируемого блока питания от 1,5 до 12,5 в

Схема блока питания с регулировкой выходного напряжения для получения напряжения от 1,5 вольта до 12,5 вольт, в качестве регулирующего элемента применяется микросхема LM317. Ее необходимо установить на радиатор, на изолирующей прокладке для исключения замыкания на корпус.

Схема блока питания с фиксированным выходным напряжением

Схема блока питания с фиксированным выходным напряжением напряжением 5 вольт или 12 вольт. В качестве активного элемента применяется микросхема LM 7805, LM7812 она устанавливается на радиатор для охлаждения нагрева корпуса. Выбор трансформатора приведен слева на табличке. По аналогии можно выполнить блок питания и на другие выходные напряжения.

Схема блока питания мощностью 20 Ватт с защитой

Схема предназначена для небольшого трансивера самодельного изготовления, автор DL6GL. При разработке блока ставилась задача иметь КПД не менее 50%, напряжение питания номинальное 13,8V, максимум 15V, на ток нагрузки 2,7а.
По какой схеме: импульсный источник питания или линейный?
Импульсные блоки питания получается малогабаритный и кпд хороший, но неизвестно как поведет себя в критической ситуации, броски выходного напряжения …
Несмотря на недостатки выбрана схема линейного регулирования: достаточно объемный трансформатор, не высокий КПД, необходимо охлаждение и пр.
Применены детали от самодельного блока питания 1980-х годов: радиатор с двумя 2N3055. Не хватало еще только µA723/LM723-регулятор напряжения и несколько мелких деталей.
Регулятор напряжения напряжения собран на микросхеме µA723/LM723 в стандартная включении. Выходные транзисторы Т2, Т3 типа 2N3055 для охлаждения устанавливаются на радиаторы. При помощи потенциометра R1 устанавливается выходное напряжение в пределах 12-15V. При помощи переменного резистора R2 устанавливается максимальное падение напряжение на резисторе R7, которое составляет 0,7В (между контактами 2 и 3 микросхемы).
Для блока питания применяется тороидальный трансформатор (может быть любой по вашему усмотрению).
На микросхеме MC3423 собрана схема срабатывающая при превышении напряжения (выбросах) на выходе блока питания, регулировкой R3 выставляется порог срабатывания напряжения на ножке 2 с делителя R3/R8/R9 (2,6V опорное напряжение), с выхода 8 подается напряжение открывающее тиристор BT145, вызывающее короткое замыкание приводящее к срабатыванию предохранителя 6,3а.

Для подготовки блока питания к эксплуатации (предохранитель 6,3а пока не участвует) выставить выходное напряжение например, 12.0В. Нагрузите блок нагрузкой, для этого можно подключить галогенную лампу 12В/20W. R2 настройте, что бы падение напряжение было 0,7В (ток должен быть в пределах 3,8А 0,7=0,185Ωх3,8).
Настраиваем срабатывание защиты от перенапряжения, для этого плавно выставляем выходное напряжение 16В и регулируем R3 на срабатывание защиты. Далее выставляем выходное напряжение в норму и устанавливаем предохранитель (до этого ставили перемычку).
Описанный блок питания можно реконструировать для более мощных нагрузок, для этого установите более мощный трансформатор, дополнительно транзисторы, элементы обвязки, выпрямитель по своему усмотрению.

Самодельный блок питания на 3.3v

Если необходим мощный блок питания, на 3,3 вольта, то его можно изготовить, переделав старый блок питания от пк или используя выше приведенные схемы. К примеру, в схема блока питания на 1,5 в заменить резистор 47 ом большего номинала, или поставить для удобства потенциометр, отрегулировав на нужное напряжение.

Трансформаторный блок питания на КТ808

У многих радиолюбителей остались старые советские радиодетали, которые валяются без дела, но которые можно с успехом применить и они верой и правдой вам долго будут служить, одна из известных схем UA1ZH, которая гуляет по просторам интернета. Много копий и стрел сломано на форумах при обсуждении, что лучше полевой транзистор или обычный кремниевый или германиевый, какую температуру нагрева кристалла они выдержат и кто из них надежнее?
У каждой стороны свои доводы, ну а вы можете достать детали и смастерить еще один несложный и надежный блок питания. Схема очень простая, защищена от перегрузки по току и при параллельном включении трех КТ808 может выдать ток 20А, у автора использовался такой блок при 7 параллельных транзисторов и отдавал в нагрузку 50А, при этом емкость конденсатора фильтра была 120 000 мкф, напряжение вторичной обмотки 19в. Необходимо учитывать, что контакты реле должны коммутировать такой большой ток.

При условии правильного монтажа, просадка выходного напряжения не превышает 0.1 вольта

Блок питания на 1000в, 2000в, 3000в

Если нам необходимо иметь источник постоянного напряжения на высокое напряжение для питания лампы выходного каскада передатчика, что для этого применить? В интернете имеется много различных схем блоков питания на 600в, 1000в, 2000в, 3000в.
Первое: на высокое напряжение используют схемы с трансформаторов как на одну фазу, так и на три фазы (если имеется в доме источник трехфазного напряжения).
Второе: для уменьшения габаритов и веса используют бестрансформаторную схему питания, непосредственно сеть 220 вольт с умножением напряжения. Самый большой недостаток этой схемы — отсутствует гальваническая развязка между сетью и нагрузкой, как выход подключают данный источник напряжения соблюдая фазу и ноль.

В схеме имеется повышающий анодный трансформатор Т1 (на нужную мощность, к примеру 2500 ВА, 2400В, ток 0,8 А ) и понижающий накальный трансформатор Т2 — ТН-46, ТН-36 и др. Для исключения бросков по току при включении и защите диодов при заряде конденсаторов, применяется включение через гасящие резисторы R21 и R22.
Диоды в высоковольтной цепи зашунтированы резисторами с целью равномерного распределения Uобр. Расчет номинала по формуле R(Ом)=PIVх500. С1-С20 для устранения белого шума и уменьшения импульсных перенапряжений. В качестве диодов можно использовать и мосты типа KBU-810 соединив их по указанной схеме и, соответственно, взяв нужное количество не забывая про шунтирование.
R23-R26 для разряда конденсаторов после отключения сети. Для выравнивания напряжения на последовательно соединенных конденсаторах параллельно ставятся выравнивающие резисторы, которые рассчитываются из соотношения на каждые 1 вольт приходится 100 ом, но при высоком напряжении резисторы получаются достаточно большой мощности и здесь приходится лавировать, учитывая при этом, что напряжение холостого хода больше на 1,41.

Еще по теме

Трансформаторный блок питания 13,8 вольта 25 а для КВ трансивера своими руками.
Трансформаторный блок питания
Ремонт и доработка китайского блока питания для питания адаптера.
Доработка блока питания

Схемы блоков питания

Схемы. Самодельный блок питания на 1,5 вольта, 3 вольта, 5 вольт, 9 вольт, 12 вольт, 24 вольта. Стабилизатор 7812, 7805

Схемы блоков питания | 2 Схемы

Схемы самодельных блоков питания на различные напряжения и ток – простые БП для начинающих и мощные двухканальные регулируемые лабораторные источники питания со всеми защитами.

Без хорошего, универсального БП в нашем деле никуда! Поэтому хочу представить ещё одну реализацию удачного регулируемого источника питания для мастерской, построенного на основе хорошо известной …

Некоторым устройствам требуется более длительный срок подачи напряжения, чем остальной части схемы. Это может быть, например, внешнее освещение, которое работает в течение некоторого времени после …

Данный источник питания собран на базе микросхемы PAM2306AYPxx, которая объединяет двойной ШИМ-контроллер понижающего преобразователя с исполнительными механизмами и элементами защиты. Это облегчает создание блока питания …

Лабораторный блок питания PS-1503D – это практически самый дешевый регулируемый китайский блок питания из представленных на Али. Технические данные лабораторного источника питания постоянного тока: модель: …

Представляем обзор простого блока питания в стиле “сделай сам” на основе готовых электронных модулей, заказанных у китайских друзей. Такой подход здорово экономит время и деньги, …

Всем привет, вот ещё одна интересная схемка – простой симметричный источник питания. Это не полноценный лабораторный источник питания, так что не нужно слишком много от …

Хочу поделиться схемой универсального лабораторного блока питания 0-22 В, 0-2,5 А. БП имеет полностью цифровой контроль. Устройство работает безупречно уже третий год, только внес изменения …

Попробовал недавно собрать схему мощного лабораторного блока питания 0-30 В с защитой 0-10 А, работает нормально. Принципиальная схема, печатная плата и файлы в общем архиве. …

В этой статье представим два самых простых регулируемых блока питания на базе популярных микросхем LM317 и LM337. Конструкции были сделаны из дешевых и легкодоступных деталей. …

Этот мощный самодельный блок питания состоит из двух отдельных модулей: управляющей части со стабилизатором и инвертора. В данной конструкции блока питания отсутствует силовой трансформатор (как …

Проект этого очень мощного импульсного источника питания давно ждал своего времени и наконец был воплощен в железе, потому что потребовался регулируемый лабораторный ИП повышенной мощности. …

Разрешите представить на суд уважаемых радиолюбителей и читателей сайта 2Схемы довольно необычный лабораторный источник питания с регулировками напряжения 0 – 20 В и током защиты …

Блок питания – комплект для самостоятельной сборки из одного зарубежного радиоконструктора, только тут трансформатор 2x 9 В 2,5 A, соответственно снижен в 2 раза предел …

Предпосылкой к проекту было создать простой и дешевый преобразователь напряжения. Постоянное напряжение 12 В при выходном переменном значении около 220 В и нагрузочной способности до …

Радиопередатчик, которым по долгу службы иногда пользуюсь, имеет напряжение 12 В, поэтому блок питания к нему требуется достаточной мощности. Купить готовый можно, но это же …

Разрешите представить на суд читателей сайта 2Схемы универсальный источник питания для радиомастерской, изготовленный из блока питания ATX с контроллером TL494. БП был создан быстро из …

Источник питания для некоторых планшетов, например Asus Eee, имеет нестандартное напряжение 9,5 В, 2,3 А. На рынке нет стабилизатора для этого напряжения, поэтому схема должна …

Понижающий преобразователь постоянного напряжения на TL494 представляет собой типичный ШИМ-контроллер и силовые транзисторы IRFZ44N. Катушка 40 мкГн участвует в преобразовании входного напряжения 12 Вольт в …

Очередная полезная покупка с сайта AliExpress – электронная нагрузка с тестером емкости аккумуляторов, хотя производитель дал модулю другое название: «тестер разрядки аккумулятора». Куплено было устройство …

Нужен мощный БП на ток более 10 Ампер? Вот одна из самых простых схем источников питания, которую можно собрать предварительно протестировав и отрегулировав. Исходные предположения …

Самодельный лабораторный блок питания: vladikoms — LiveJournal

Когда то у меня был советский источник питания Б5-47, он очень громко и противно пищал, грелся, периодически из него шел дым. Таким образом пользование сей девайсом более 5 минут причиняло просто невыносимые моральные страдания. Явно он был неисправен. Вскрытие показало что лучше его сразу выбросить и забыть. К тому же его интерфейс управления мне никогда не нравился, юзабельность тоже оставляла желать лучшего. Понятно, что без нормального БП жизнь скучна, решил быстренько сделать БП из того что было под рукой. В итоге изготовление данной конструкции по разным причинам затянулось аж на 2 года. Собственно вот результат:


Требования были следующие: регулируемое выходное напряжение до 30 В с регулируемым токоограничением до 5 А. Разумеется должна применяться цифровая индикация. Дизайн должен напоминать MASTECH HY3005D и им подобные. Единственное — мне никогда не нравилось что первый прибор показывает ток. Ну неправильно это — напряжение всегда первично, соответственно первый прибор должен показывать именно напряжение.

Первоначально проектировал схему на базе линейного стабилизатора К142ЕН2А, но в итоге отказался от этой идеи — низкий КПД, регулирующий силовой транзистор сильно грелся даже с учетом того что был предусмотрен переключатель отпаек на вторичной стороне трансформатора. Да и вообще всё как-то криво работало. Пришлось выпилить.

Второй вариант схемы разработал на базе легендарного ШИМ-контроллера TL494, который в разных вариациях встречается во многих компьютерных блоках питания. На этот раз всё получилось как надо.

Вкратце о конструкции:

Принципиальная схема (кликабельно)

Как уже говорил — девайс собрал из запчастей, большинство которых были в радиусе 5 метров от меня.

Понижающий трансформатор нашелся под столом, марки я его не знаю. Напряжение на вторичке около 40 В.
D1 — TL494, VD1 — диод шоттки и тороидальный дроссель L1 выпаял из неисправного компьютерного блока питания: диод шоттки используется в схеме выпрямления, он установлен на радиаторе возле импульсного трансформатора, тороидальный дроссель расположен рядом с ним.
LM358 — весьма хороший и распространенный операционный усилитель. Продаётся почти на каждом углу. Рекомендован к приобретению.
Шунт R12 — взял из какого-то старого связисткого оборудования: представляет собой 3 толстых изогнутых проволочки.

Резисторы R9, R10 используются для регулирования выходного напряжения (грубо, точно). Резисторы R3, R4 используются для регулирования токоограничения (грубо, точно).
При наладке БП подстроечным резистором R15 регулируется порог переключения светодиодной сигнализации. Еще возникли проблемы с интегральным стабилизатором 7805 — при входном напряжении около 40 В он начинал ужасно глючить — просаживал выходное напряжение, решил проблему установив по входу 1 Вт гасящий резистор R13.

Сам корпус взят от древнего самопишущего регистратора. Компоновка получилась следующей — в середине корпуса установлен силовой трансформатор, который вошел туда как родной, видимо они были созданы друг для друга. В передней части БП расположена электронная схема управления, органы управления и сигнализации. В задней части корпуса расположена вся силовая электроника. Таким образом трансформатор как бы делит БП на 2 части — слаботочную и силовую.

Передняя часть корпуса с откинутой лицевой крышкой. Цифровые измерительные приборы приехали из Китая, они заводского производства. Электронная схема управления состоит из 2 плат: плата регулятора напряжения — TL494 c обвязкой, и плата сигнализации — включает в себя микросхемы D3,D4. Почему не сделал на одной плате? Просто сигнализацию я делал несколько позже чем регулятор, и отдельно доводил её «до ума». Там тоже были свои заморочки.

Задняя часть корпуса. На общем радиаторе установлены диодный мост KBPC 3510, силовой транзистор КТ827А, дроссель L1, шунт R12. Всё это дело изнутри обдувается 12 сантиметровым вентилятором. В задней части корпуса установлены также предохранители, сглаживающие конденсаторы C1, C4 и маленький вспомогательный импульсный блок питания для работы вентилятора и цифровых измерительных приборов.

Конечно, можно было бы купить фирменный БП и не городить огород. Но иногда хочется самому поизобретать велосипед

Если кто-то задумает повторить конструкцию вот здесь выложил принципиальную схему в высоком разрешении и чертежи печатных плат в формате Sprint Layout.

Обновление 09.01.2019

По прошествии времени пользователи в комментариях поделились своими модификациями блоков питания. Рассмотрим подробнее предложенные варианты. Обсуждение всех конструкций по-прежнему доступно в комментариях

Модификация № 1

Предложена acxat_smr

Принципиальная схема

Драйвер полевика (точнее, двух параллельно — выравниванием токов занимаются сами полевики) запитан от отдельного источника 15в. У себя взял промагрегат 9-36в/15в TEN 12-2413. От него же запитаны кулеры.
TL494 запитана от отдельного источника 24 в.
Потенциометр вольтажа любой, замер тока с шунта амперметра. Трансформатор выдает 34 в, выпрямленного около 45.
Проблема мощности упиралась в дросселе. Если 5-амперник нормально шел, то 20 помучал.
Практическим путем нашел вариант два параллельно на кольцах от компового. 23 витка проводом 1,15мм.

Внешний вид конструкции

Модификация № 2

Предложена rond_60

Принципиальная схема

Недавно натолкнулся на эту статью про ЛБП на TL494. Загорелся желанием собрать БП по этой схеме, тем более уже давно валялся трансформатор от польского блока питания на 24в и 4а. Вторичка выдает 34в переменки, после моста с кондером 10000х63в — 42в. Собрал навесным монтажом по этой схеме, включил и сразу дым из 494-й. Все проверил, заменил микросхему, включаю — на холостом работает, на выходе напряжение пытается регулироваться, прикоснулся к 494 — горячая! Добавил номинал 4.7к резистору R1 — блок работает, но стоило подключить лампочку 24в 21вт, как взорвалась микросхема в районе 9, 10 ножки. Отмотал с вторичной обмотки транс-ра несколько витков (снизил напряжение на 4 вольта) и все равно горят микросхемы. Питание на 8,11,12 ноги подавал 12в с другого БП, мотал дроссель разным по диаметру проводом и количеством витков — толку нет (сжег 6 микрух). У меня есть кой — какой опыт по переделке компьютерных блоков в зарядные устройства и регулируемые блоки питания на основе TL494 и ее аналогах. Начал собирать обвязку ШИМа по схемам к комповым БП. Изменил управление силовым транзистором, подал питание на ШИМ от отдельного источника на 12в (переделал зарядку от сотового телефона) и все — блок заработал! Пару дней настраивал на регулировки и свист дросселя (оссцила нет) теперь надо отлутить плату управления и можно собирать в корпус.

Сегодня настраивал свой БП. Спасибо большое shc68 за подсказку проверять пульсации на выходе динамиком если нет осциллографа. При малой нагрузке (лампочка 12в, 21вт) из динамика слышался гул и вой когда крутил регулятор тока. Устранил это безобразие установкой дополнительных конденсаторов (на схеме обведено красным цветом).
Как рекомендовал shc68 конденсатор С15 действительно жизненно важный. Еще с помощью динамика определил бракованный потенциометр на регулировку тока. При его вращении из динамика слышался шорох и треск. После его замены и установки доп. конденсаторов из динамика тишина (чуть слышное шипение) при разной нагрузке на выходе БП.
Делал тест на нагрев деталей блока. При такой нагрузке в течении 1.5 часов только транзистор грелся (трогал пальцем его корпус), а радиатор, где он установлен, чуть теплый (обдувается вентилятором). Дроссель — холодный, трансформатор тоже.

Внешний вид конструкции

Модификация № 3

Предложена andrej_l

За основу была взята схема с полевиком https://ic.pics.livejournal.com/rond_60/78751049/3328/3328_original.jpg
При отладке появились проблемы с управлением полевика через трансформатор. На небольших токах нагрузки он работал, при увеличении более 2 ампер происходил срыв и падение тока (при скважности ШИМ > 30%). Пришлось убрать трансформатор и вместо него поставить оптодрайвер ACPL3180 с питанием от отдельной обмотки трансформатора.
Сделал 2 независимых канала с регулировкой напряжения до 30V и ограничения тока до 10A. Второй канал запустился сразу, только пришлось подстроить максимальные значения напряжения и тока. Регулировочные резисторы — 10 оборотные
https://ru.aliexpress.com/item/Free-Shipping-3590S-2-103L-3590S-10K-ohm-Precision-Multiturn-Potentiometer-10-Ring-Adjustable-Resistor/32673624883.html?spm=a2g0s.11045068.rcmd404.3.de3456a4CSwuV3&pvid=b572f0cb-2d84-4353-a657-a28824b99672&gps-id=detail404&scm=1007.16891.96945.0&scm-url=1007.16891.96945.0&scm_id=1007.16891.96945.0
В качестве V-A метра применён китайский модуль
https://ru.aliexpress.com/item/DC-100-10A-50A-100A/32834619911.html?spm=a2g0s.9042311.0.0.466b33edLWGUwZ с доработкой, достигнута точность показаний 2% при больших токах и 10 мА при токах до 1А.
Радиатор на транзисторе и диоде один от компьютерного блока питания. При нагрузке на лампу 15V 150W он нагревается до 80 градусов (больше греется диод). Настроил включение вентилятора охлаждения на 50 град. (один на 2 канала)
Окончательная схема одного канала

Rшунт 0,0015 Ом — Это встроенный шунт прибора, к нему добавляются сопротивление проводов от индикатора до клемм XS104 и «-«, при большом токе они оказывают значительное влияние. Провод 1,5 кв.мм
Настройка:
1 Запускаем задающий генератор на TL494 и драйвер с отключенным затвором VT101. На выходе драйвера будет ШИМ около 90%. Настраиваем частоту TL в пределах 80 — 100 кГц подбирая R107
2 Подключаем затвор транзистора (для подстраховки питание +45 подаём через токоограничивающий балласт, я брал 2 лампы 24V 150W последовательно) и смотрим выход БП. Подключаем небольшую нагрузку (я брал 100 Ом). Если напряжение на выходе регулируется то устанавливаем максимальное значение выхода с помощью R122.
3 Убираем токоограничивающий балласт, нагружаем выход сильнотоковой нагрузкой (я брал лампу 15V 150W) и настраиваем максимальный ток в нагрузке: R106 постепенно выводим в нижнее по схеме положение, подбираем R104 и R105 добиваясь срабатывания защиты по току (у меня ограничение по току 10А). При сработке токовой защиты регулировка напряжения с помощью R101 в большую сторону не приводит к его росту на выходе.
4 Узел индикации на операционнике и светодиодах не нуждается в настройке (его единственный недостаток — небольшая подсветка красного светодиода когда горит зелёный, можно исправить включив последовательно с красным обычный диод.
5 настраиваем Р101 на нужную температуру срабатывания вентилятора нагрузив блок питания на приличную нагрузку измеряя температуру диода и транзистора на радиаторе.

Внешний вид:

Осциллограммы


Блок питания своими руками — как сделать компактный и простой блок

Блоки питания постоянного тока нужны не только радиолюбителям. Они имеют очень широкую сферу применения, и поэтому ими в той или иной степени пользуется большинство домашних мастеров. В этой статье описаны основные типы преобразователей напряжения, их характерные отличия и области применения и то, как сделать простой блок питания своими руками.

Самостоятельное изготовление позволит получить экономию немалых денежных средств. Разобравшись с устройством и принципом работы можно легко выполнить ремонт этого устройства.

Краткое содержимое статьи:

Области применения

Эти устройства имеют очень широкую сферу применения. Давайте рассмотрим основные способы использования. Для экономии ресурса аккумуляторных батарей к самодельным блокам питания подключают низковольтный электроинструмент.  Такие приборы используются для подключения светодиодных осветительных приборов, установке освещения в помещениях с высокой влажностью и опасностью поражения электрическим током и для многих других целей, не имеющих прямого отношения к радиоэлектронике.


Классификация устройств

Большинство блоков питания преобразуют сетевое переменное напряжение величиной 220 вольт в постоянное напряжение заданной величины. При этом устройства характеризуется большим перечнем рабочих параметров, которые необходимо учитывать при покупке или конструировании.

Основными рабочими параметрами является выходной ток, напряжение и возможность стабилизации и регулировки выходного напряжения. Все эти преобразователи по способу преобразования классифицируются на две большие группы: аналоговые и импульсные приборы. Эти группы блоков питания имеют сильные отличия и легко различаются по фото с первого взгляда.

Ранее выпускались только аналоговые приборы. В них преобразование напряжения осуществляется с помощью трансформатора. Собрать такой источник не составляет труда. Его схема достаточна проста. Он состоит из понижающего трансформатора, диодного моста и стабилизирующего конденсатора.

Диоды преобразуют переменное напряжение в постоянное напряжение. Конденсатор дополнительно его сглаживает. Недостатком таких приборов являются большие габариты и масса.

Трансформатор мощностью 250 Ватт обладает массой несколько килограмм. Кроме того на выходе таких устройств напряжение может меняться от внешних факторов. Поэтому для стабилизации выходных параметров в таких аппаратах в электронную схему добавляются специальные элементы.

С использованием трансформаторов изготавливаются блоки питания повышенной мощности. Такие приборы целесообразно использовать для зарядки автомобильных аккумуляторов или для подключения электрических дрелей для экономии ресурса литиевых аккумуляторов.

Преимуществом такого устройства является гальваническая развязка между двумя обмотками (за исключением автотрансформаторов). Первичная обмотка, подключенная в сеть высокого напряжения, не имеет физического контакта с вторичной обмоткой. На ней генерируется пониженное напряжение.

Передача энергии осуществляется с помощью магнитного поля переменного тока в металлическом сердечнике трансформатора. При наличии минимальных знаний в радиоэлектронике своими руками легче собрать классический регулируемый блок питания с использованием трансформатора.


С развитием электронной техники стало возможным выпускать более дешевые полупроводниковые преобразователи напряжения. Они очень компактны, мало весят и обладают очень низкой ценой. Благодаря этому они стали лидерами рынка. В любой квартире используются несколько разных блоков питания.

К сожалению, в большинстве современных приборов отсутствует гальваническая развязка с питающей сетью. Из-за этого довольно часто гибнут люди, которые при зарядке сотового телефона или другой техники пользуются прибором и одновременно принимают ванну или умываются.

При соблюдении техники безопасности человеку ничего не грозит. Эти приборы обладают достаточно низкой стоимостью и при их поломке зачастую их не пытаются отремонтировать, а приобретают новое устройство. Тем не менее если разобраться со схемами и принципами работы импульсных блоков питания, то легко можно будет, как отремонтировать такой блок питания, так и собрать новый прибор.

Импульсные блоки питания

Давайте разберемся с устройством и принципом работы импульсных источников питания. В таких приборах на входе переменное сетевое напряжение преобразуется в высокочастотное напряжение. Для трансформации токов высокой частоты требуются не большие трансформаторы, а миниатюрные электромагнитные катушки. Поэтому такие преобразователи легко умещаются в маленьких корпусах. Например, они легко размещаются в пластиковом патроне энергосберегающей лампы.


Компоновка такого блока питания в приборе небольшого размера не вызывает никаких проблем. Для надежной работы необходимо предусмотреть возможность охлаждения на специальных металлических радиаторах нагревающихся элементов электронной схемы. Преобразованное напряжение выпрямляется с помощью быстродействующих диодов и сглаживается на выходном фильтре.

Недостатком таких приборов является неизбежное наличие высокочастотных помех на выходе преобразователя, несмотря даже на наличие специальных фильтров. Кроме того, в импульсных приборах используются специальные схемы стабилизации выходного напряжения.


Импульсный блок питания можно приобрести в виде отдельного блока, готового к монтажу в приборе. Также это устройство можно собрать самостоятельно, воспользовавшись широко распространенными схемами и инструкциями по сборке блоков питания.

При этом следует учесть, что самостоятельная сборка может обойтись дороже покупного изделия, приобретенного в интернете на азиатском рынке. Это может быть вызвано тем, что радиоэлектронные компоненты продаются с большей наценкой, чем наценка производителя в Китае на сборку изделия и его доставку. В любом случае, разобравшись с устройством таких приборов, можно будет не только собрать такой прибор самостоятельно, но и при необходимости отремонтировать. Такие навыки будут очень полезными.

При желании сэкономить, можно воспользоваться импульсными блоками питания от персональных компьютеров. Зачастую в вышедшем из строя персональном компьютере находится исправный блок. Они требуют минимальной доработки перед использованием.

Такие блоки питания имеют защиту от холостого хода. Они должны всё время находиться под нагрузкой. Поэтому для того, что бы избежать отключения в нагрузку включают постоянное сопротивление. Такие модернизированные блоки применяют в первую очередь для питания бытового электроинструмента.

Фото блоков питания своими руками


Простой настольный блок питания, который может построить любой!

Скачать PDF YouTube

Сегодня мы сконструируем очень простой настольный блок питания. Это полезное устройство, которое найдет дом на любом рабочем месте. Его также очень легко построить, что делает его идеальным проектом для начинающих.

Лучше всего, что эта конструкция не требует возиться с каким-либо высоким напряжением. Он безопасен и прост в сборке благодаря использованию готовых модулей и избыточного блока питания ноутбука.

Одним из важнейших элементов оборудования любого рабочего места для электроники является источник питания. Источник регулируемого постоянного напряжения — это то, что нужно каждому экспериментатору.

Чаще всего в цифровой электронике используются напряжения 5, 3,3 и 12 В. Есть много разных способов получения этих напряжений, в том числе обычные источники питания USB, вырабатывающие 5 вольт.

Если вы ищете простое в сборке устройство, которое выводит все эти стандартные напряжения, мы уже создали блок питания с использованием старого блока питания компьютера ATX.Это был хороший прибор, я даже добавил к нему амперметр, чтобы я мог измерять ток. И в большинстве случаев это все, что вам действительно нужно.

Однако бывают случаи, когда вам нужно «необычное» напряжение. Возможно, вы разрабатываете схему, которая в конечном итоге будет работать от батарей, и вам нужно имитировать батарею на 6, 7,4 или 9 В. Или вам может просто понадобиться второй блок питания.

Дизайн, который я придумал, очень легко построить, любой, у кого есть минимальные навыки электронного строительства, не должен иметь проблем с его сборкой.И вам не нужно строить точно такой же блок, который создал я, вы можете использовать принципы проектирования, показанные здесь, для создания блока питания, который будет адаптирован для любого приложения.

Приступим!

Источник питания на заказ

Вот посмотрите на блок питания, который я построил. И я покажу вам, как построить такой же. Но тебе не обязательно.

Вы также можете использовать простые методы проектирования, которые я покажу вам, для создания нестандартного источника питания.С переменным выходом или без него. С другим фиксированным напряжением или без фиксированного напряжения.

Я на самом деле собираю другой блок питания с четырьмя фиксированными выходными напряжениями для моей камеры, чтобы избавиться от четырех отдельных блоков питания, которые я сейчас использую, когда снимаю свои видео. И я буду использовать ту же технику.

Создан с заботой о безопасности

Одна вещь, о которой вам нужно помнить при создании любого источника питания, — это высокое напряжение на линии (или «сети»).

Переменный ток в вашем доме составляет от 110 до 240 вольт, и он может убить вас, если вы с ним соприкоснетесь! Ошибка проводки может вызвать возгорание или стать причиной «горячего» металлического корпуса, что превратит самодельный блок питания в смертоносное оружие.

В этой конструкции нет необходимости обрабатывать сетевое напряжение. Вы будете работать только с низковольтным постоянным током. Это безопасная конструкция, даже если вы новичок.

Мы свершим эту «магию», используя то, что у вас, вероятно, уже есть в ящике для мусора или хранится в ящике в шкафу.

И, в качестве бонуса, ваш блок питания будет иметь надлежащую сертификацию для работы с сетевым напряжением без нарушения вашего полиса страхования жилья.

Переработанные детали

«Загадочная деталь», лежащая в основе нашей конструкции блока питания, — это не что иное, как силовой «кирпичик» от старого ноутбука!

Эти «блоки» обычно выдают около 19 вольт, и большинство из них имеют приемлемую токовую нагрузку. Это особенно актуально для старых устройств, предназначенных для 15- и 17-дюймовых ноутбуков, они требовали приличного количества тока.

Я использую старый компьютер HP, который был куплен в 2008 году. Компьютер больше не работает, но его блок питания получил новую жизнь!

Детали блока питания

Наряду с «кирпичиком» блока питания, который я только что описал, эта конструкция упрощена за счет использования модулей понижающего преобразователя.

Я рассмотрел некоторые из этих модулей в статье и видео о Powering Your Projects, которые я сделал. Модули, которые я использовал, не рассматривались в этом контенте, и, поскольку есть сотни таких модулей, вам не обязательно использовать те же, что и я.

Вот детали, которые я использовал в своей простой конструкции блока питания.

Блок питания для ноутбука

Как упоминалось выше, мой блок питания пришел от ноутбука HP. Конечно, вы можете использовать другой, на самом деле, я ожидаю, что вы это сделаете.

Вот несколько особенностей, на которые следует обратить внимание при выборе блока питания:

  • Напряжение — Обычное напряжение 19 вольт, что я и использовал. Другое распространенное выходное напряжение — 15 вольт, что также было бы приемлемо.Все, что ниже, ограничит диапазон выходных напряжений, которые вы получите. Обычно вам нужен адаптер, который может обеспечить как минимум на 2 вольта больше, чем максимальное желаемое выходное напряжение.
  • Текущий — Чем больше, тем лучше. Мой кирпич рассчитан на 5 ампер, ищите тот, который может выдавать не менее 3 ампер. Следует отметить, что некоторые из этих устройств, особенно от компьютеров сторонних производителей, на самом деле не могут выводить столько, сколько они заявляют. По сути, здесь чем выше, тем лучше.
  • Вход — Конечно, он должен быть способен принимать ваше сетевое напряжение с подходящей вилкой. Большинство этих устройств являются «универсальными», так что обычно это не проблема. А если это один из ваших старых компьютеров, значит, у него уже есть подходящая вилка питания.
  • Выходной разъем — В идеале ваше устройство будет использовать штекер, для которого можно найти ответное гнездо. В противном случае придется припаивать новую вилку. Если вам все же нужно его изменить, я рекомендую использовать 2.Коаксиальный «цилиндрический» штекер питания 1 мм или 2,5 мм, так как они очень распространены и их легко найти.

Ноутбуки — не единственные устройства, в которых используются блоки питания, подходящие для этой конструкции, вы также можете найти некоторые старые принтеры, у которых они есть. Если у вас еще нет одного чека с друзьями и семьей, или просмотрите несколько гаражных распродаж или излишков магазинов. Скорее всего, у вас не возникнет проблем с его получением.

Модули понижающего преобразователя

Недорогие модули понижающего преобразователя — вот что делает возможным этот проект.Они снимают с себя всю тяжелую работу по созданию стабильного регулятора напряжения и намного эффективнее линейных устройств.

Для создания этого источника питания я использовал пару модулей понижающего преобразователя.

DROK 180081 Понижающий стабилизатор напряжения с числовым программным управлением

Я купил этот модуль на Amazon, и он является сердцем моего блока питания.

Это устройство рассчитано на входное напряжение 6-55 вольт и выходное напряжение 0-50 вольт. Поскольку я подаю только 19 вольт, максимальная выходная мощность составляет около 17 вольт.

Это действительно хорошее устройство с функцией памяти для хранения ряда предустановленных уровней выходного напряжения. Это очень удобная функция, если у вас есть обычные напряжения, которые вам нужно часто использовать.

Он использует поворотный энкодер для установки напряжения с шагом 0,01 В. Цветной дисплей показывает напряжение, ток и мощность, а также уровень входного напряжения.

Мне нравится этот модуль, потому что с ним очень легко работать. Он имеет пару соединений для входной мощности и еще одну пару для выходной мощности.

Вы можете заметить, что есть некоторые похожие модели, которые включают отдельную плату с вентилятором, есть также другие модели, которые могут принимать сетевое напряжение напрямую. Поскольку я пытаюсь избежать необходимости работать напрямую с сетевым напряжением, я решил не использовать их.

Я посмотрел на некоторые другие преобразователи переменного тока с дисплеями и, наконец, основал дизайн на этом, поскольку он имеет очень привлекательную переднюю панель, которая придаст вашему источнику питания профессиональный вид.

LM2596 Понижающий преобразователь постоянного тока в постоянный

LM2596 — очень популярная микросхема понижающего преобразователя, которая используется во многих недорогих модулях регуляторов.Выбранные мной модули (которые я также получил от Amazon) были чрезвычайно недорогими, я купил комплект из 10 штук, и они стоят около 1,50 доллара США за штуку

.

Выбранные мной модули принимают входное напряжение от 3 до 40 вольт и выдают на выходе от 1,5 до 35 вольт. Максимальный ток 3 ампера.

Устройства оснащены многооборотным потенциометром, с помощью которого можно регулировать выходное напряжение. В моем случае я установил для модуля выходное напряжение 5 вольт, поскольку я решил, что было бы неплохо иметь выход 5 вольт, а также переменный.

Эти модули очень просты в использовании. У них есть два контакта для входа постоянного тока и два контакта для выхода.

Шасси и другие детали

Блок питания и понижающие преобразователи являются основными компонентами блока питания, но для выполнения этой работы вам также понадобятся несколько других деталей.

Вот некоторые из других предметов, которые вам понадобятся:

  • Шасси — Я купил проектное пластиковое шасси размером 165 мм x 120 мм x 68 мм, но, конечно, вы можете использовать любую коробку, способную вместить ваши компоненты.Вы можете даже напечатать корпус на 3D-принтере, если у вас есть возможности. Я выбрал пластик, потому что его легко резать и сверлить.
  • Крепежные стойки — Вам потребуется набор крепежных стержней для каждой выходной мощности. В моем дизайне с фиксированным и переменным выходом я выбрал два черных столбика (для заземления или отрицательного), а также красный и желтый.
  • Разъем питания — он должен соответствовать вилке на вашем блоке питания. В некоторых блоках питания используются необычные вилки, которые трудно найти, поэтому вам, возможно, придется поменять местами 2 штекера.1 или 2,5 мм джек, так как они очень распространены. Лучше всего подойдет блок, устанавливаемый на шасси.
  • Стойки — Вам понадобится пара стоек, чтобы удерживать фиксированный регулятор. В понижающих преобразователях, которые я использовал, есть гнезда для 3-миллиметровых винтов, поэтому я использовал 3-миллиметровые стойки.
  • Провод — Потребуется какой-нибудь соединительный провод, лучше 22 калибра. Я обнаружил, что с одножильным проводом легче работать, но вы также можете использовать многожильный. Я бы посоветовал выбрать два разных цвета, чтобы избежать пересечения отрицательного и положительного.

Вам также понадобится припой, паяльник, отвертки, отвертки для гаек, плоскогубцы и дрель с битами. То, что у вас, вероятно, уже есть.

Конструкция блока питания

Теперь, когда вы собрали все свои детали и инструменты, пора создать наш блок питания! Я предполагаю, что вы собираете тот же источник питания, что и я, но если это не так, вы можете просто изменить инструкции в соответствии со своими конкретными требованиями.

Как видно из схемы, подключение очень простое.Вы буквально отправляете напряжение от блока питания на входы понижающих преобразователей, а затем отправляете выходы преобразователя на клеммы привязки.

Как я уже сказал с самого начала, это очень простой проект!

Перед тем, как соединить все вместе, я использовал свой существующий блок питания для тестирования отдельных модулей. Я использовал резистор на 18 Ом и 10 Вт в качестве нагрузки и подавал 19 вольт на вход каждого преобразователя. Затем я измерил выходной сигнал мультиметром.

Конечно, вы можете использовать блок питания вместо настольного источника питания, особенно если у вас его еще нет (что вполне может быть причиной того, что вы строите этот).

Я испытал угловой энкодер на понижающем преобразователе переменной и посмотрел результат на своем мультиметре. Казалось, это сработало очень хорошо.

Затем я переключился на «фиксированный» преобразователь и повернул многооборотный потенциометр так, чтобы он давал на выходе 5 вольт.

Детали все рабочие и готовы к сборке.

Создание источника питания

Прежде чем я смог все подключить, я должен был подготовить шасси. Я просверлил отверстия на передней панели для крепежных столбов, а затем с помощью дрели и ножа вырезал отверстие для модуля переменного понижающего преобразователя.

Открытие, правда, грубоватое, но лицевая панель на модуле это прекрасно скрывает.

Еще я просверлил отверстие на задней панели для разъема питания. Вы также можете добавить сюда выключатель, если хотите, я решил не делать этого, так как это простой вопрос — просто «вытащить вилку», когда я хочу все выключить.

Наконец, я просверлил несколько отверстий для стоек, чтобы закрепить меньший модуль понижающего преобразователя.

Электромонтаж всего

Я обнаружил, что отверстия на моих «фиксированных» понижающих преобразователях могут принять два сплошных провода сечением 22 г, поэтому я скрутил провода вместе и вставил их в отверстие.Как раз подошли, и я спаял соединения.

В качестве альтернативы вы можете выбрать параллельное соединение входных соединений на разъеме для понижающего преобразователя переменной частоты, поскольку в нем используются винтовые клеммы.

Я использовал наконечники, которые идут в комплекте с клеммами, и припаял к ним выходные провода постоянного тока от каждого понижающего преобразователя. Модуль переменного понижающего преобразователя с дисплеем поставляется с винтовым разъемом, который отсоединяется от модуля. Это позволяет вам все подключить, а затем подключить модуль позже.

После того, как все было подключено, я прикрепил штекер силового цилиндра к задней панели с помощью прилагаемого оборудования. Убедитесь, что не забыли стопорную шайбу, так как это предотвратит ослабление сборки.

Конструкция передней панели состоит из установки крепежных столбов, при этом вторую гайку оставляют в стороне для последующего прикрепления выступов.

Модуль переменного понижающего преобразователя просто встает на место, если вы правильно прорезали отверстие! К сожалению, производитель не предоставил монтажный шаблон, поэтому я использовал штангенциркуль и линейку, чтобы понять это.

Если вы получите тот же модуль, что и я, вырез по сути представляет собой прямоугольник размером 71,5 x 39,2 мм, по крайней мере, так мне сказали мои цифровые штангенциркуль.

Затем я прикрепил фиксированный понижающий преобразователь к стойкам и проверил все соединения. Пора собрать шасси!

Herse другой вид всех частей после того, как проводка сделана, но до того, как все было смонтировано.

Вы можете увидеть, как проушины прикрепляются к задней части крепежных столбов с помощью прилагаемых дополнительных гаек.Хорошо затяните эти гайки.

Теперь вы можете защелкнуть панели на месте, сдвинув переднюю и заднюю панели вместе. Однако не закрывайте все герметично, так как мы хотим протестировать и отрегулировать наш блок питания, прежде чем закрывать корпус.

Тщательно осмотрите все, а затем переходите к фазе тестирования.

Тестирование и устранение неисправностей

Предполагая, что вы были осторожны с подключением, у вас теперь должен быть рабочий блок питания.Возможно, вы захотите точно настроить фиксированное выходное напряжение модуля.

Перед тем, как что-либо подключить к розетке, неплохо было бы выполнить несколько проверок целостности с помощью мультиметра, чтобы убедиться в отсутствии коротких замыканий или ошибок проводки. Если вы потратите немного времени на повторную проверку вещей, это избавит вас от лишних разочарований!

Получите ту же тестовую нагрузку, которую вы использовали раньше, и подключите ее к выходу 5 В вместе с мультиметром в режиме напряжения. Отрегулируйте многооборотный потенциометр на фиксированном модуле, чтобы получить напряжение как можно ближе к 5 вольт.

Переместите тестовую нагрузку и мультиметр на переменный выход. Поэкспериментируйте с элементами управления и убедитесь, что ваше выходное напряжение соответствует отображению на вашем измерителе.

Возможно, сейчас самое время просмотреть инструкцию к модулю и узнать, как использовать его функции памяти. Похоже, это довольно способное устройство.

Когда вы будете довольны работой вашего нового блока питания, вы можете выключить его и закончить сборку корпуса. В моем пластиковом корпусе для этого нужно было положить верхнюю часть корпуса, надеть ее на переднюю и заднюю панели, а затем защелкнуть.

Четыре длинных винта удерживают монтажные ножки и используются для крепления верхней и нижней части корпуса. Затяните их, и блок питания готов.

Теперь у вас есть новый блок питания для вашего рабочего места!

Устранение неисправностей

Наиболее вероятная причина плохой работы с этой конструкцией блока питания — слабый блок питания. Если вам удастся заполучить несколько из них, вы можете обнаружить, что один работает лучше, чем другие.

Если вы не получаете выходной сигнал от одного регулятора, но имеет выход на другом, перепроверьте вашу проводку.Вы также можете легко удалить переменный модуль благодаря разъему uts, чтобы помочь вам изолировать проблему.

Доступ к сильноточному настольному источнику питания для временного использования в качестве входа также может быть полезен.

В большинстве случаев вам вообще не нужно устранять неполадки, и все будет работать отлично. А затем вы можете похвалить себя за создание полезного прототипа и испытательного оборудования самостоятельно.

Заключение

Итак, у вас есть простой способ быстро создать полезный источник питания, который можно легко адаптировать к вашим требованиям.

Усовершенствованиями к базовому источнику питания могут быть светодиод питания на 5-вольтовом выходе и, конечно же, соответствующий понижающий резистор (220 — 470 Ом звучит хорошо). И вы можете добавить выключатель питания, чтобы вы могли быстро отключить питание.

Так что веселитесь, перерабатывая и переделывая старые компьютерные блоки питания в настольные блоки питания собственной уникальной конструкции!

ресурса

PDF-версия — PDF-версия этой статьи, отлично подходит для печати и использования на вашем рабочем месте.

Связанные

Сводка

Название статьи

Простой настольный блок питания, который может построить любой!

Описание

Создайте простой и безопасный настольный блок питания, перепрофилировав старый блок питания ноутбука вместе с некоторыми высокотехнологичными модулями понижающего преобразователя.

Автор

Мастерская Dronebot

Имя издателя

Мастерская Dronebot

Логотип издателя

DIY Двухканальный переменный лабораторный настольный источник питания 30 В, 10 А, 300 Вт, сборка и тестирование

Настольный источник питания — это очень важная часть оборудования, которой может владеть каждый любитель электроники.Это помогает ограничить напряжение и ток. Это обязательно, когда мы тестируем схемы, заряжаем аккумуляторы и тестируем компоненты, а также гаджеты, но проблема в том, что эти блоки питания не такие дешевые, и новичок не хочет вкладывать такие большие деньги в устройство. часть оборудования.

В этой статье мы спроектируем настольный блок питания, который будет очень экономичным и полностью модульным, так что каждый может сделать его самостоятельно, обладая некоторыми базовыми знаниями в области электроники.

Прежде всего, посмотрите видео…

N.Б. Не копируйте этот проект, если у вас нет опыта работы с электроникой. Это высокое напряжение смертельно опасно!

Список деталей для разработки настольного источника питания

Прежде всего, нам нужен модуль, который может контролировать все напряжения и ограничения тока. Я использовал повышающий-понижающий преобразователь LTC3780, который является действительно мощным понижающим и повышающим преобразователем, который может выдерживать до 130 Вт, и с надлежащей системой распределения тепла он может выходить за рамки этого (я тестировал выходную мощность до 245 Вт для пару минут, хотя я не рекомендую вам использовать такое огромное количество энергии, если вы не разработаете правильную систему распределения тепла).Я использовал два из этих модулей для создания двухканального лабораторного лабораторного источника питания.

Далее нам нужен источник питания, который может обеспечить напряжение от 5 до 30 В. Итак, я использовал свой старый блок питания для ПК, который, как вы знаете, имеет шины 3,3 В, 5 В, 12 В и -12 В. Я использовал только шины на 12 В. Также на -12 В, о котором я говорил позже в этой статье.

Третья по важности часть необходимых нам модулей — это измерители напряжения и тока. Они могут измерять до 30 В 10 А. Они довольно точны, если вы используете их как конфигурацию, о которой я упоминал позже.

И, конечно же, вам понадобятся многооборотные потенциометры, которые вы можете купить или сделать своими руками, как я показал на видео ниже.

Также нам понадобятся некоторые дополнительные компоненты, такие как держатель предохранителя, розетка переменного тока, вентилятор, решетка вентилятора, винты и 4 зажимных стержня. (Необязательно) «Пара крепежных столбов» и одиночных «крепежных столбов» — если вы хотите вынуть рельсы -12 В.

Как использовать блок питания ПК в качестве настольного блока питания?

Конечно, мы можем использовать «Блок питания ПК» в качестве настольного блока питания для начинающих, но мы здесь не для этого, а здесь, чтобы модифицировать блок питания ПК для модулей LTC3780.

Источник питания, который я использую, согласно маркировке, может выдавать 24 А на шине 12 В, всего 288 Вт. Достаточно хорош, чтобы продолжить, но с его выходными проводами это определенно не рекомендуется. Эти тонкие провода в одиночку не поддерживают ни 288 Вт, ни 130 Вт нагрузки, а также кучу дополнительных проводов, выходящих из блока питания, которые в конечном итоге становятся бесполезными. Самое главное, нам нужно избавиться от этого корпуса, потому что мы не можем разместить в нем модули LTC3780.

Доработка блока питания…

Итак, я снял корпус и вынул все ненужные провода.Кроме того, я заменил четыре желтых провода 12 В и 4 провода заземления синим и черным проводом 0,5 кв. Мм соответственно, как показано на изображении ниже.

Теперь я должен упомянуть, что у меня закоротил зеленый провод на GND, чтобы блок питания (блок питания ПК) оставался включенным навсегда. Обычно при замыкании зеленого и черного проводов вместе блок питания включается и отсоединяет их, блок питания выключается. (Изображение)

Также я не снимал синий провод. Благодаря этому блок питания может обеспечить -12 вольт относительно земли.Я заменил этот провод красным проводом толщиной 1 мм, чтобы получить шину -12 В от источника питания.

Конфигурация выглядит так: + 12V GND и -12V. +12 В не является выходом модулей повышающего преобразователя, а +12 является прямым выходом SMPS. Итак, я спаял желтый провод 1 мм (для +12 В) и два черных провода толщиной 0,5 мм (для GND) с SMPS.

Затем я вынул вентилятор из печатной платы и припаял два провода, чтобы позже подключить к нему вентилятор.

Вот и все.Выходные клеммы готовы, пора вводить. В моем случае белый провод — это «фаза», черный — «нейтральный», а этот зеленый провод — «земля». Я заменил их синим, черным и зеленым проводами, которые являются фазой, нейтралью и заземлением соответственно.

Как измерить выходную мощность в настольном блоке питания?

Я упомянул измерители напряжения и тока в разделе «Список деталей» этой статьи. Пришло время их использовать. Я привел схему подключения ниже.

Помните, никогда не пытайтесь соединить положительный и отрицательный провода питания измерителя с выходом блока питания. Из-за этого ваши измеренные значения могут быть искажены или неточны. Для точного измерения необходимо использовать отдельный источник питания.

Как вы можете сравнить «текущие» показания на измерителе и на мультиметре, оно искажено из-за использования выхода блока питания, но с другим источником питания, текущее значение довольно точное.

Как использовать модули LTC3780?

Прежде всего, подключите выход 12 В блока питания ПК к входу модуля LTC3780 и используйте не менее 5 В на контакте (показанном на рисунке ниже), чтобы активировать выход платы.Позже это очень удобно для включения / выключения вывода модуля.

Теперь мы можем повозиться с этими тремя потенциометрами. крайний левый регулирует выходное напряжение — максимальное может достигать 29В и минимальное 0,7В.

Триммер в центре может ограничивать ток. Минимальное значение составляет 0,11 А или 110 мА, а максимальное — 7,61 А при 1 В.

Третий триммер не следует трогать, потому что он предназначен для защиты от пониженного напряжения, о которой мы не заботимся в данном случае.

Модификация с модулями LTC3780

Здесь особо нечего модифицировать, я только что заменил триммеры модуля 500К и 200К на многооборотные потенциометры, которые я изготовил сам с помощью тех триммеров, которые я снял ранее.

N.B. Для второго канала питания я использовал второй LTC3780 в такой же конфигурации. На этот раз единственная разница: Я использовал только другой набор сине-черных проводов блока питания на входе модуля.

Установка настольного источника питания

Чтобы упаковать все компоненты вместе, я использовал металлический ящик, как показано на рисунке ниже.

Подготовка металлического ящика

Во-первых, я накрыл переднюю панель малярной лентой и сделал несколько основных измерений там, где я хочу разместить мои внешние части; Я отметил эти места и, используя роторный инструмент и сверлильный станок, сделал места для дисплеев, крепежных столбов и переключателей.

На задней панели также есть некоторые компоненты, такие как вентилятор, розетка переменного тока и держатель предохранителя, так что опять же, мой сверлильный станок и вращающийся инструмент очень пригодятся. На этот раз единственная разница в том, что я использовал шлифовальную насадку со своим роторным инструментом. Кроме того, я использовал долото, чтобы обнажить вентилятор с задней панели (подробности можно найти в видео).

Время сборки…

Затем я собрал все компоненты на передней и задней панели, кроме потенциометров, потому что они уже спаяны с модулями LTC3780, поэтому нам придется позже установить их на переднюю панель.

N.B. Я немного изменил тему коробки по своему вкусу, так что не беспокойтесь, если вам не понравится эта наклейка.

Теперь все, что нам нужно сделать, это установить все печатные платы внутри корпуса. Я разместил их в подходящем месте, наметил отверстия для винтов, просверлил эти отверстия и, используя двусторонний скотч в качестве изолятора, затянул все печатные платы с корпусом несколькими гайками и болтами.

Хорошо, теперь приступим к подключению.Я начал с задней панели. Я спаял предохранительную розетку переменного тока, переключатель на передней панели и печатную плату блока питания вместе, как показано на рисунке ниже.

Передний переключатель ВКЛ / ВЫКЛ имеет световой индикатор, работающий от сети переменного тока 220 В, поэтому переключателю для этого нужна нейтральная линия. Который я установил от нейтральной линии розетки переменного тока.

На передней панели я начал с крепежных столбов. Сначала я установил +12 В и -12 В с помощью парной клеммы для привязки (красный — +12 В, а черный — -12 В), а для единственной клеммы было установлено заземление.

Я подключил к ним все выходы модулей LTC2780. У меня есть два набора красного и желтого проводов. Красный должен быть соединен с красным стержнем для привязки, потому что он положительный, а желтый будет соединен с черным стержнем для привязки через путь измерения тока измерителя (толстый черный провод соединяется с желтым проводом, а толстый красный провод соединяется с черным стержнем для привязки). Все описано на изображении ниже. Желтый провод измерения напряжения измерителя должен быть подключен к красной клеммной колодке.

Хорошо, когда все настроено, я также установил потенциометры с металлическим корпусом с помощью гаек.

Конечно, проверка короткого замыкания корпуса очень важна, поэтому я взял мультиметр и убедился, что нет контакта между корпусом и крепежными штырями.

После этого я подготовил переключатели DPST. Одна секция управляет сигналом включения модуля LTC 3780, а другая секция включает счетчики на передней панели. Не забудьте использовать отдельный источник питания для счетчиков (я использовал адаптер питания на 6 В).Я сначала разобрал его, уменьшил его подверженность мощности и припаял к нему провод питания переменного тока, фаза которого соединена с выходом переключателя, а нейтраль соединена с розеткой переменного тока.

Наконец, я подключил провод вентилятора к блоку питания ПК.

N.B. Не забывайте использовать изоляторы на всех стыках проводов, иначе система может сильно закоротить, и вся система может сгореть за доли секунды!

Соберем все части коробки вместе.Это довольно простая работа, но вы должны быть осторожны с проводами. Они не должны быть пробиты коробкой.

Кроме того, вы должны использовать ручки на потенциометрах, чтобы держать их под рукой, хотя здесь я должен вырезать оси потенциометров, чтобы идеально настроить ручки.

Поставив верхнюю крышку на место, я затянул все винты, и все готово.

Тестирование лабораторного источника питания

Что ж, мне нужен предохранитель на 2А при первом включении настольного источника питания.После подключения источника переменного тока к розетке я нажал выключатель питания, и, к счастью, взрыва не произошло.

Затем я включил два других переключателя, чтобы активировать выходы переменного напряжения и тока. Только нажатие на главный выключатель питания включает выход секции + 12V и -12V.

Как использовать настольный блок питания?

На самом деле, это довольно просто. Во-первых, вам нужно установить желаемое напряжение с помощью ручки регулировки напряжения, затем замкнуть две выходные клеммы и установить выходной ток с помощью ручки регулировки тока.Вот и все.

Регулировка напряжения стационарного источника питания

В плане конструкции все так же. Позвольте мне рассказать вам, где расположены ручки. Крайний левый контролирует напряжение, а второй контролирует ток канала 1. 3-й потенциометр контролирует напряжение, а 4-й потенциометр контролирует ток канала питания 2.

Регулировка тока настольного источника питания

Тестирование настольного источника питания

Для соединения вывода с обвязочными штырями следует использовать банановые заглушки.Я припаял провода внутри, а также припаял зажимы типа «крокодил» на другом конце провода. Наконец-то мы подошли к концу этого проекта. Итак, чтобы протестировать его результаты, давайте немного поработаем над ним. Я воспользовался этой штуковиной с длинной нихромовой проволокой.

Я соединил две клеммы источника питания с этим устройством, и вы можете видеть, что счетчик показывает напряжение, а также потребление тока этой резистивной нагрузки.

В заключение…

Итак, я могу сказать, что этот двухканальный блок питания DIY работает отлично.Это очень дешевый способ создать источник питания для вашей лаборатории. Но будьте осторожны с переменным напряжением, с которым вы работаете. Одна простая ошибка может лишить вас жизни. Надеюсь, вы, ребята, нашли это видео и статью о блоке питания DIY Bench полезными и интересными, тогда не забудьте подписаться на наш канал YouTube и сообщить нам, если у вас возникнут какие-либо проблемы при воссоздании этого проекта. Спасибо, что посетили и оценили нашу работу.

Схема лабораторного источника питания — самодельные проекты схем

Хотя в последнее время появилось множество лабораторных источников питания, лишь немногие из них обеспечат вам эффективность, универсальность и низкую стоимость конструкции, подробно описанной в этой статье.

В этом посте рассказывается о строго регулируемом самодельном лабораторном источнике питания с двойным напряжением 0–50 вольт. Диапазоны напряжения и тока независимо изменяются от 0 до 50 В и от 0 до 5 ампер соответственно.

Сказав, что, благодаря компоновке DIY, вы можете настроить параметры по мере необходимости, что можно увидеть в следующей таблице спецификаций. ..

  • Количество источников питания = 2 (полностью плавающих)
  • Диапазон напряжения = от 0 до 50 В
  • Диапазон тока = от 0 до 5 ампер
  • Соотношение грубого и точного регулирования как для тока, так и для напряжения = 1:10
  • Стабилизация напряжения = 0.Линия 01% и нагрузка 0,1%
  • Ограничитель тока = 0,5%

Вам также понравится: Как спроектировать схему стационарного источника питания


Описание схемы

На рисунке 1 выше показана принципиальная схема лабораторного источника питания. Технические характеристики компоновки сконцентрированы вокруг IC1, регулируемого регулятора LM317HVK, обеспечивающего широкие функциональные возможности. Суффикс «HVK» указывает на высоковольтную версию регулятора.

Оставшаяся часть схемы обеспечивает возможность настройки напряжения и ограничения тока.Вход на IC1 исходит от выхода BR1, который фильтруется C1 и C2 примерно до +60 В постоянного тока, а вход для токового компаратора IC2 создается мостовым выпрямителем BR2, который, кроме того, работает как источник отрицательного смещения, чтобы получить регулировка до уровня земли.

Функция IC1 — поддерживать на клемме OUT 1,25 В постоянного тока на клемме ADJ. Потребление тока на выводе ADJ чрезвычайно минимально (всего 25 мкА), и, следовательно, R15 и R16 (грубые и уточненные манипуляции с напряжением) и R8 образуют делитель напряжения с 1.Около R8 появляется 25 вольт.

Нижний вывод R16 подключается к опорному напряжению -1,3, создаваемому D7 и D8, что позволяет резистивному делителю R8 — R15 фиксировать выходное напряжение вплоть до уровня земли в любой момент, когда R15 + R16 становится равным 0 Ом.

Расчет выходного напряжения

Обычно выходное напряжение зависит от следующих результатов:

(VouT — 1,25 + 1,3) / (R15 + R16) = 1,25 / R8.

Таким образом, максимальное значение напряжения, доступное для каждой платы переменного питания, может быть:

VOUT = (1.25 / R8) x (R15 + R16) = 50,18 В постоянного тока.

Потенциометры R15 и R16 используются для управления выходным напряжением, которое позволяет изменять VouT от 0 до 50 вольт постоянного тока.

Как работает контроль тока

Когда увеличивается постоянный ток нагрузки, падение напряжения на R2 также возрастает, и при примерно 0,65 вольт (что относительно примерно 20 мА) включаются Q1 и Q2, становясь основным ходом Текущий. Кроме того, R3 и R4 гарантируют, что Q1 и Q2 справляются с нагрузкой равномерно.IC2 работает как ступень ограничителя тока.

Его неинвертирующий вход использует выходное напряжение как опорное, в то время как его инвертирующий вход подключен к делителю напряжения, разработанному R6, и токовым регуляторам R13 и R14. Падение напряжения на R6 составляет около 1,25 В, указанное выше опорное напряжение определяется разностью между выводами OUT и ADJ IC1.

Ток, проходящий через Q1 и Q2, проходит через R9, создавая падение напряжения на R13 + R14.В результате IC2 принудительно выключается, как только падение напряжения вокруг R9 генерирует ток через R13 и R14, в результате чего неинвертирующее входное напряжение выходит за пределы VouT.

Это фиксирует порог ограничения тока на уровне: (IouT x 0,2) / (R13 + R14) = 1,25 / 100K; низкий = от 0 до 5 ампер. Это обеспечивает соответствующий диапазон около 0-5 ампер.

Когда достигается порог ограничения тока, выход IC2 становится низким, приводя в движение вывод ADJ через D2, что приводит к включению светодиода LED1.Дополнительный ток для D5 доставляет R5.

Когда на выводе ADJ установлен низкий уровень, выход следует, пока выходной ток не упадет до точки, эквивалентной настройке R13 и R14.

Учитывая, что выходное напряжение может быть в пределах 0-50 вольт, напряжение питания для IC2 должно соответствовать этому диапазону при работе с D3, D4 и Q3.

Затем D9 проверяет, что выходное напряжение не увеличивается после выключения входа питания, в то время как D10 защищает от обратного напряжения питания.Наконец, счетчики M1 отображают значение напряжения, а M2 отображает текущее значение.

Список деталей

Схема расположения печатной платы

Еще одна простая схема лабораторного источника питания с использованием LM324 IC

Для получения промежуточного напряжения питания здесь использовался стабилизатор IC LM7815. Его выход перемещается с помощью R17, который считывает выходной ток для полевого МОП-транзистора T1.

Этот полевой МОП-транзистор управляется операционным усилителем IC1, сконфигурированным как регулятор напряжения. В этой лабораторной цепи питания R11 и C4 задают полосу пропускания контура управления, что позволяет устранить колебания на повышенных частотах.

Резистор R15 гарантирует, что емкостные нагрузки с пониженным эффективным сопротивлением не приведут к нестабильности контура управления. Отрицательная обратная связь содержимого переменного тока по току через R12 и C5 позволяет схеме быть совершенно надежной, даже если на выходе источника питания используется большой конденсатор.

Отрицательная обратная связь по постоянному току через фильтр нижних частот устанавливается резистором R14 и конденсатором C6. Эта конфигурация гарантирует, что падение напряжения, возникающее на резисторе R15, эффективно компенсируется.

Выходной конденсатор C7 обеспечивает источник с низким сопротивлением для высокочастотных нагрузок. Резистор R16 помогает разрядить конденсатор C17 всякий раз, когда установленное напряжение уменьшается при отсутствии выходной нагрузки.

Секция IC1D работает как регулятор тока. Еще раз, чтобы убедиться, что лабораторный источник питания работает с идеальной стабильностью, ширина полосы обратной связи ограничена резистором R19 и конденсатором C8.

В случае, если падение напряжения, возникающее на резисторе R17, становится выше, чем значение, заданное предварительно установленным P2, срабатывает функция ограничения тока схемы, и транзистор T2 запускается.

Это действие впоследствии снижает входное напряжение до ступени цепи стабилизации напряжения до тех пор, пока не будет достигнута заданная величина выходного тока. Резисторы R7, R9 и конденсатор C3 гарантируют, что правильное регулирование тока не приведет к выбросам выходного напряжения, а также гарантирует отсутствие эффекта резонанса при подключении индуктивной нагрузки к выходу.

Использование IC 723

Следующий дизайн демонстрирует простой, но чрезвычайно полезный лабораторный источник питания с использованием IC LM723:

Coda Effects — Сделайте свой собственный источник питания DIY: да или нет?

Давайте будем честными: покупка блока питания — это не самое смешное.

Это довольно дорого (и я должен признать, что я бы предпочел добавить еще один пух, который мне не нужен — хорошая педаль к моему педалборду, чем блок питания! 😁) и различия в между несколькими моделями на рынке не очень очевидно …


Поэтому я спросил себя: можно ли сделать блок питания своими руками?
В этом сообщении в блоге я объясню, как работает блок питания, каковы хорошие критерии для его выбора с точки зрения электроники и стоит ли сделать его самостоятельно.Пойдем!

Как работает блок питания?

Источник питания играет простую роль: преобразует 220 В от вашей розетки в множество выходов 9 В постоянного тока для ваших педалей.

Легко? Не совсем! Давайте углубимся в предмет, заглянув внутрь моего блока питания Carl Martin Pro Power:


Как видите, внутри довольно многолюдно!

Основным элементом является трансформатор.

Не этот, конечно 😁 (badum tss!)


А вот большой квадратный синий компонент посередине блока питания.

Как следует из названия, он может преобразовать переменный ток 220 В из розетки в меньшее напряжение. Это трансформатор R10, который обеспечивает выходное напряжение 15 В.

Но нашим педалям нужен постоянный ток (DC)! Для перехода от переменного тока к постоянному обычно используется диодный мост. Остающийся ток стабилизируется конденсаторами, которые генерируют постоянный ток с множеством оставшихся пульсаций.

Для большей плавности в есть два регулятора напряжения, которые вы можете увидеть здесь :


Возможно, вы уже использовали регуляторы в гитарных эффектах.Если да, то вы что-то заметили: обнимаются!

Действительно, они обеспечивают высокий ток 1,5 А каждый ! Это LM317, и они используются для обеспечения тока, достаточного для всех выходов источника питания. Carl Martin Pro Power имеет два выхода по 500 мА и шесть выходов по 100 мА, что в сумме составляет 1600 мА, что ниже максимальных 3 А, которые эти может обеспечить.

Видно, что у них огромные радиаторы, которые касаются корпуса, когда он закрыт.Они очень важны, потому что регуляторы рассеивают МНОГО тепла ! Рассеиваемая мощность 1,5 Вт может выделять тепло до 100 ° C. Таким образом, важно иметь хорошую систему отвода тепла, чтобы избежать возгорания!

Также можно увидеть много электролитических конденсаторов:


Все эти конденсаторы служат для одной цели: фильтровать источник питания! Они устранят последние колебания переменного тока, которые все еще могут присутствовать, чтобы избежать шума 50 Гц в ваших педалях. Вы можете видеть, что на каждом выходе есть как минимум один.

Слишком долго, не читал: такое бывает в блоке питания: 220 переменный ток от вашей розетки преобразовал в 15 В переменного тока трансформатором, затем в постоянный ток мостовым выпрямителем. Остающийся постоянный ток стабилизируется регуляторами. Затем 9 В постоянного тока фильтруется множеством электролитических конденсаторов.

Тааааааааааааааааааааааааач … Что такое ХОРОШИЙ блок питания?

Конечно, есть хорошие и плохие блоки питания.

Конечно, важно следить за количеством выходов и их силой подаваемого тока, но с точки зрения электроники следует учитывать два основных момента.

1. Качество фильтрации
Электролитические конденсаторы, которые используются для фильтрации, и тип схемы фильтрации, в которой они используются, будут определять общий выходной шум источника питания.

Фильтрация не одинакова в каждом источнике питания и может вызывать различия в уровне шума. Однако производители не всегда включают выходной шум, и без сложных инструментов его довольно сложно измерить …

Как всегда, было бы здорово, если бы мы могли получить немного больше прозрачности от производителей!

2.Тип трансформатора
Трансформаторы могут излучать электромагнитные волны. Ваши кабели подобны антеннам, которые улавливают его, что создает шум … В зависимости от типа трансформатора, будет больше или меньше шума.

Обычно в источниках питания гитарных педалей используется трансформатор с сердечником R , который имеет низкое электромагнитное излучение по сравнению с другими трансформаторами, такими как тороидальные трансформаторы. Например, Carl Martin Pro Power имеет трансформатор с сердечником R.

В лаборатории Voodoo используется «нестандартный тороидальный трансформатор», который снижает шум, но, на мой взгляд, не является оптимальным.

Strymon пошла по другому пути, использовав импульсный источник питания в своих источниках питания Ojaj и Zuma, который генерирует гораздо меньше электромагнитных излучений.

И работает! Посмотрите это видео:

Блок питания своими руками: возможно ли?

Короче говоря, ответ: да, но не стоит.

Сделать работоспособный блок питания довольно просто. Сделать эффективный, безопасный и бесшумный источник питания намного сложнее!

Действительно; ВЫ ДОЛЖНЫ быть очень осторожны с перегревом.Регуляторы выделяют много тепла и могут легко вызвать пожар в вашей системе или, что еще хуже, в вашем доме!

Существует также риск электробезопасности. Вы должны включить все элементы безопасности, которые обеспечивают вашу безопасность при использовании источника питания: предохранители, заземление, автоматический выключатель …

Поэтому все источники питания сертифицированы CE, что гарантирует электрическую и пожарную безопасность:


Еще одна проблема — корпус. К сожалению, это не стандартные корпуса.

Наконец, есть большая вероятность, что характеристики вашего блока питания будут довольно низкими по сравнению с коммерческими.

Вот почему я бы посоветовал вам просто купить сертифицированный CE блок питания с изолированными выходами.

Я считаю, что мой Carl Martin Pro Power действительно хорош и не слишком дорог. Если вам нужны блоки питания высшего качества, Strymon Zuma или Strymon Ojaj просто лучшие в своем классе.

Если вам понравилась эта статья, поблагодарите меня за лайк на странице Coda Effects в фейсбуке! Вы также можете следить за Coda Effects в Instagram.

Чтобы пройти дальше:

Настольный источник питания домашнего изготовления

Настольный источник питания домашнего изготовления Эта статья также доступна на португальском языке.

У любого любителя электроники есть несколько настольных блоков питания. Взрослея в подростковом возрасте в 1980-х годах в Северном Онтарио у меня не было денег, чтобы купить надлежащий настольный источник питания. Итак, как обычно, я построил свой. Я впервые построил этот примерно в 1985 году, но затем переделал его с более красивым корпусом и вольтметр 1987 г.он должен был быть довольно маленьким, потому что я хотел взять его с когда я учился в университете.

Корпус, конечно же, деревянный, потому что это то, что мне пригодилось. Это приятно шкатулка из дуба. Дуб прочный и менее подвержен возгоранию, чем более светлый лес. Верх просто скользит по передней и задней части панели с пазом для удержания их на месте. Таким образом, со снятой крышкой, я смогу получить во внутренних органах легче.

Для передней панели я наклеил ламинированную бумагу перед куском фанеры, с переключателями и такие крепятся через ламинированную бумагу и фанеру.Выглядит действительно хорошо, но я не ожидал ламинированная бумага прослужит так долго. Это было в 1987 году, и сегодня он выглядит хорошо, 28 лет спустя. Но это отчасти потому, что большую часть своей жизни он находился в относительно неосвещенных местах. Надпись на передней панели выполнена карандашом. Мои компьютеры Commodore 64 и самодельный плоттер не стал бы получили такой же красивый результат, и потребовалось бы гораздо больше работы.

Если вы сегодня пользуетесь такой техникой, я рекомендую использовать фотобумагу на струйном принтере.Так однажды я сделал новую шкалу для метрового движения. Было предпринято несколько попыток, но вышло действительно мило.

Это нерегулируемый источник питания без каких-либо полупроводников, кроме мостового выпрямителя.

В основе лежит трансформатор накаливания от старого лампового тестера 1951 года. Нагревательные нити трубок в более дешевых безтрансформаторных Все телевизоры были подключены последовательно, поэтому раньше к ним подавались все виды напряжения нити накала. Тестер ламп имел многоотводный трансформатор для выбора широкого диапазона напряжения.

На первичной обмотке тоже было два крана. Раньше между ними был реостат, так что напряжение устройства может быть изменено в зависимости от линейного напряжения (тестер трубки сам тоже был нерегулируемым). Я добавил переключатель для выбора между два ответвления, удвоение 17 ступеней напряжения до 34. Переключение ответвлений изменяет выход на 12%. Я не мог придумать, как назвать переключатель, поэтому назвал его «Boost», потому что напряжение на передней панели находится в низком положении. Люди имеют часто высмеивали этот лейбл!

Я добавил измерительный механизм с диапазонами для 15 и 30 вольт постоянного тока и толчок кнопка для чтения ампер.Счетчик не должен превышать 30 вольт, потому что я подключил его так, чтобы при превышении 30 вольт сторона постоянного тока отключилась. Переключатель удобно был кран для этого. Конденсаторы фильтра и выпрямитель I рассчитаны только на 35 вольт. Однако переменный ток идет прямо (над клеммами постоянного тока) и достигает 140 вольт.

Самое приятное в использовании этого источника питания — это поворот ручки. Это очень приятный щелчок переключение между напряжениями. И напряжение можно регулировать очень быстро, если не совсем.Но обычно я могу подобраться достаточно близко для того, что мне нужно. Очень отличается от настраивая многооборотную ручку и наблюдая, как цифровой приборный щиток достигает нужного напряжения. Конечно, я не использую его, когда мне нужно точное напряжение, например, для зарядки лития. ионные ячейки.

Выход переменного тока часто бывает полезен — например, при проверке небольших двигателей переменного тока или для питание катушки размагничивания. Однажды я даже принесла на работу задуть какие-то шорты у нас были прототипы печатных плат.Без всякой электроники между трансформатором и клеммы, он будет выдавать более 20 ампер на короткое время.

Еще я поставил на него две розетки, подключенные к сетевому шнуру. Я всегда находил себя не хватает розеток при игре с электроникой, поэтому две дополнительные розетки всегда под рукой.

Я заново нарисовал его схему, глядя на схему. Прелесть этого блока питания в том, что он настолько прост, что я могу понять все в нем. В наши дни даже дрели и фонарики содержат модную электронику, но не этот блок питания.


Я также узнал интересную вещь о механизме счетчика, когда построил его. Для диапазона тока 3 А я использовал стальной провод в качестве шунтирующего резистора, который я нажал на точную длину, которая мне нужна, чтобы механизм читал полную шкалу на три ампера. Для отклонения полной шкалы на клеммах счетчика требуется около 57 милливольт. Проблема с подключением измерителя напрямую к шунтирующему резистору заключается в том, что движение катушки измерителя через его магнитное поле вызывает довольно много противо-ЭДС при движении иглы.Без нескольких кОм сопротивления последовательно с движение измерителя, обратная ЭДС от иглы заставляет его двигаться, как это было под водой. В конце концов, счетчик установит правильное значение, но требуется около двух секунд, чтобы добраться туда.

В любом случае, этот блок питания по-прежнему остается моим любимым настольным блоком питания, и я все еще чаще всего использую сегодня. Это просто приятно использовать. Это должен быть звук и ощущение поворачивая ручку напряжения!

Статьи / видео, где я использовал этот блок питания: Серия

DIY Tools: Как построить источник питания | Custom

Почти все источники питания вырабатывают напряжение с положительной (+) и отрицательной (-) клеммами.Обычно отрицательная клемма заземляется и используется в качестве опорного напряжения 0 В, что означает, что положительная клемма будет иметь положительное напряжение (больше 0) по отношению к отрицательной клемме. Этот тип источника питания часто называют однорельсовым источником питания, обеспечивающим 0 В и + В.

В большинстве проектов для начинающих используется только одна шина питания, поэтому батареи и бородавки являются хорошими источниками питания. В конце концов, однако, в проектах начинают использоваться сложные схемы операционных усилителей, для которых требуются раздельные источники питания, требующие как положительного, так и отрицательного напряжения.Например, батарею на 9 В можно сделать так, чтобы она питала либо 9 В, либо –9 В, но она не может работать одновременно.

Если две батареи 9 В подключены последовательно, а среднее соединение используется в качестве заземления (или 0 В), то одна батарея может обеспечивать + 9 В, а другая батарея обеспечивает -9 В. Но использование двух таких источников питания не всегда практично, поэтому здесь появляется генератор отрицательного напряжения!

Генератор отрицательного напряжения питается от одной шины и вырабатывает отрицательное напряжение, близкое к напряжению питания (например, источник 10 В, подключенный к генератору отрицательного напряжения, может генерировать -9 В).Как они работают, зависит от конкретной схемы, но схема, используемая в этом проекте, использует особый феномен, называемый «емкостной связью».

По сути, конденсаторы стараются поддерживать постоянную разность потенциалов на них одинаковой, и внезапное изменение напряжения на одной пластине приведет к тому, что другая пластина будет следовать той же тенденции. Например, если разность потенциалов на конденсаторе составляет 5 В, а на одной пластине установлено напряжение 10 В, тогда другая пластина поднимется на 5 В (разница).То же самое верно, если напряжение на конденсаторе составляет 5 В, а пластина 5 В быстро опускается до 0 В, тогда другая пластина уменьшится на 5 В, что приведет к тому, что эта пластина будет -5 В. При некоторой умной работе с диодами можно сделать простой генератор отрицательного напряжения с использованием двух конденсаторов, двух диодов и нестабильного генератора прямоугольных импульсов 555!

Блок питания DIY Lab Bench

Начну с необходимых компонентов:

Общая стоимость: ~~ 35 $

1. ~~ 4 $

Намного безопаснее, если коробка сделана из непроводящего материала !!!, и с ней легче работать.

2. ~~ 10 $

Блок питания . Я использовал старое зарядное устройство для ноутбука (19V 3.6A). Найдите тот, который соответствует вашим потребностям, но не беспокойтесь, с помощью дешевого повышающего / понижающего преобразователя вы можете регулировать выходное напряжение.

3. ~~ 4 $

повышающий / понижающий преобразователь dc-dc в зависимости от ваших потребностей.

В моем случае понижающий преобразователь. Для регулировки я заменил потенциометры на более крупные, которые установлены на передней панели.

4. ~~ 4 $

Цифровой вольтметр Амперметр

Приятно, что вам не нужен дополнительный инструмент (мультиметр), чтобы видеть, что происходит.

5 . ~~ 3 $ (в моем случае 2x)

Для удобной регулировки на лицевой стороне коробки, а не внутри.

6. ~~ 2 $

В целях безопасности

7. ~~ 2 $

Двойной банановый стержень для крепления с внутренней резьбой

Удобно и предлагает несколько способов подключения.

8. ~~ 3 $

Не обязательно быть сверхмощным, мне просто понравилось ракетное прикрытие.

9. ~~ 2 $

3in1 Разъем питания переменного тока

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! Если вы никогда не работали с живым током, спросите у кого-нибудь с опытом, никогда не работайте с подключенным питанием.

Leave a Reply