Катушки тесла – Как сделать катушку Тесла своими руками в домашних условиях: проектирование, создание и сборка
Трансформатор Теслы — Википедия
Разряды с провода на терминалеТрансформа́тор Те́слы, или кату́шка Те́слы (англ. Tesla coil) — устройство, изобретённое Николой Теслой и носящее его имя. Является резонансным трансформатором, производящим высокое напряжение высокой частоты. Прибор был запатентован 22 сентября 1896 года как «Аппарат для производства электрических токов высокой частоты и потенциала»[1].
Трансформатор Теслы основан на использовании резонансных стоячих электромагнитных волн в катушках. Его первичная обмотка содержит небольшое число витков и является частью искрового колебательного контура, включающего в себя также конденсатор и искровой промежуток. Вторичной обмоткой служит прямая катушка провода. При совпадении частоты колебаний колебательного контура первичной обмотки с частотой одного из собственных колебаний (стоячих волн) вторичной обмотки вследствие явления резонанса во вторичной обмотке возникнет стоячая электромагнитная волна и между концами катушки появится высокое переменное напряжение
Работу резонансного трансформатора можно объяснить на примере обыкновенных качелей. Если их раскачивать в режиме принудительных колебаний, то максимально достигаемая амплитуда будет пропорциональна прилагаемому усилию. Если раскачивать в режиме свободных колебаний, то при тех же усилиях максимальная амплитуда вырастает многократно. Так и с трансформатором Теслы — в роли качелей выступает вторичный колебательный контур, а в роли прилагаемого усилия — генератор. Их согласованность («подталкивание» строго в нужные моменты времени) обеспечивает первичный контур или задающий генератор (в зависимости от устройства).
Схема простейшего трансформатора Теслы
Простейший трансформатор Теслы включает в себя входной трансформатор, катушку индуктивности, состоящую из двух обмоток — первичной и вторичной, разрядник (прерыватель, часто встречается английский вариант Spark Gap), конденсатор, тороид (используется не всегда) и терминал (на схеме показан как «выход»).
Первичная обмотка обычно содержит всего несколько витков медной трубки или провода большого диаметра, а вторичная около 1000 витков провода меньшей площади сечения. Первичная катушка может быть плоской (горизонтальной), конической или цилиндрической (вертикальной). В отличие от обычных трансформаторов, здесь нет ферромагнитного сердечника. Таким образом, взаимоиндукция между двумя катушками гораздо меньше, чем у трансформаторов с ферромагнитным сердечником. Первичная катушка вместе с конденсатором образует колебательный контур, в который включён нелинейный элемент — разрядник.
Разрядник, в простейшем случае, обыкновенный газовый, представляет собой два массивных электрода с регулируемым зазором. Электроды должны быть устойчивы к протеканию больших токов через электрическую дугу между ними и иметь хорошее охлаждение.
Вторичная катушка также образует колебательный контур, где роль конденсатора, главным образом, выполняют ёмкость тороида и собственная межвитковая ёмкость самой катушки. Вторичную обмотку часто покрывают слоем эпоксидной смолы или лака для предотвращения электрического пробоя.
Терминал может быть выполнен в виде диска, заточенного штыря или сферы и предназначен для получения предсказуемых искровых разрядов большой длины.
Таким образом, трансформатор Теслы представляет собой два связанных колебательных контура, что и определяет его замечательные свойства и является главным его отличием от обычных трансформаторов. Для полноценной работы трансформатора эти два колебательных контура должны быть настроены на одну резонансную частоту. Обычно в процессе настройки подстраивают первичный контур под частоту вторичного путём изменения ёмкости конденсатора и числа витков первичной обмотки до получения максимального напряжения на выходе трансформатора.
Трансформатор Теслы рассматриваемой простейшей конструкции, показанной на схеме, работает в импульсном режиме. Первая фаза — это заряд конденсатора до напряжения пробоя разрядника. Вторая фаза — генерация высокочастотных колебаний в первичном контуре. Разрядник, включённый параллельно, замыкая источник питания (трансформатор), исключает его из контура, иначе источник питания вносит определенные потери в первичный контур и этим снижает его добротность. На практике это влияние может во много раз уменьшить длину разряда, поэтому в схеме трансформатора Теслы разрядник всегда ставится параллельно источнику питания.
Заряд[править | править код]
Заряд конденсатора производится внешним источником высокого напряжения на базе повышающего низкочастотного трансформатора. Ёмкость конденсатора выбирается таким образом, чтобы вместе с индуктором она составляла резонансный контур с частотой резонанса, равной высоковольтному контуру. Однако ёмкость будет отличаться от расчетной, так как часть энергии тратится на «накачку» второго контура. Напряжение заряда ограничено напряжением пробоя разрядника, которое, (в случае воздушного разрядника), можно регулировать, изменяя расстояние между электродами или их форму. Обычно напряжение заряда конденсатора лежит в диапазоне 2-20 киловольт. Знак напряжения при заряде конденсатора имеет значение в том смысле, что он не должен сильно «закорачивать» конденсатор, на котором напряжение постоянно меняет знак — Колебательный контур тут
Генерация[править | править код]
После достижения между электродами разрядника напряжения пробоя, в нём возникает лавинообразный электрический пробой газа. Конденсатор разряжается через разрядник на катушку. После разряда конденсатора, напряжение пробоя разрядника резко уменьшается из-за оставшихся в газе носителей заряда (ионов). Поэтому цепь колебательного контура, состоящего из первичной катушки и конденсатора, остаётся замкнутой через разрядник, и в ней возникают высокочастотные колебания. Колебания постепенно затухают, в основном, из-за потерь в разряднике и ухода электромагнитной энергии на вторичную катушку, но продолжаются до тех пор, пока ток создаёт достаточное количество носителей заряда для поддержания напряжения пробоя разрядника существенно меньшего, чем амплитуда напряжения колебаний в LC контуре. Во вторичной цепи возникают резонансные колебания, что приводит к появлению на терминале высокого напряжения.
Во всех типах трансформаторов Теслы основной элемент трансформатора — первичный и вторичный контуры — остается неизменным. Однако, одна из его частей — генератор высокочастотных колебаний может иметь различную конструкцию.
На данный момент существуют:
SGTC (Spark Gap Tesla Coil) — классическая катушка Теслы — генератор колебаний выполнен на искровом промежутке (разряднике).
Для мощных трансформаторов Теслы наряду с обычными разрядниками (статическими) используются более сложные конструкции разрядника.
Например, RSG (от англ. Rotary Spark Gap, можно перевести как роторный/вращающийся искровой промежуток) или статический искровой промежуток с дополнительными дугогасительными устройствами. В этом случае, частоту работы промежутка целесообразно выбирать синхронно частоте подзарядки конденсатора, и схема в этом случае ближе к картинке, а не тому, как она здесь описана. В конструкции роторного искрового промежутка используется двигатель (обычно это электродвигатель), вращающий диск с электродами, которые приближаются, (или просто замыкают), к ответным электродам для замыкания первичного контура. Скорость вращения вала и расположение контактов выбираются исходя из необходимой частоты следования пачек колебаний. Различают синхронные и асинхронные роторные искровые промежутки в зависимости от управления двигателем. Также использование вращающегося искрового промежутка сильно снижает вероятность возникновения паразитной дуги между электродами. Иногда обычный статический разрядник заменяют многоступенчатым статическим разрядником. Для охлаждения разрядников, их иногда помещают в жидкие или газообразные диэлектрики, например, в масло. Типовой прием для гашения дуги в статическом разряднике — это продувка электродов мощной струей воздуха. Иногда классическую конструкцию дополняют вторым, защитным разрядником. Его задача — защита питающей (низковольтной части) от высоковольтных выбросов.
VTTC (Vacuum Tube Tesla Coil) (рус. ЛКТ) — ламповая катушка Теслы. В ней в качестве генератора ВЧ колебаний используются электронные лампы. Обычно, это мощные генераторные лампы, такие как ГУ-81, однако встречаются и маломощные конструкции. Одна из особенностей — отсутствие необходимости в высоком напряжении. Для получения сравнительно небольших разрядов достаточно 300—600 Вольт. Также VTTC практически не издает шума, появляющегося при работе катушки Теслы на искровом промежутке.
SSTC (Solid State Tesla Coil) — генератор выполнен на полупроводниках. Он включает в себя задающий генератор (с регулируемой частотой, формой, длительностью импульсов) и силовые ключи (мощные полевые MOSFET транзисторы). Данный вид катушек Теслы является самым интересным по нескольким причинам: изменяя тип сигнала на ключах, можно кардинально изменять внешний вид разряда. Также ВЧ сигнал генератора можно промодулировать звуковым сигналом, например музыкой — звук будет исходить из самого разряда. Впрочем, аудиомодуляция возможна (с небольшими доработками) и в VTTC. К прочим достоинствам, можно отнести низкое питающее напряжение и отсутствие шумного искрового разрядника, как в SGTC.
DRSSTC (Dual Resonant Solid State Tesla Coil) — за счёт двойного резонанса, разряды у такого вида катушек значительно больше чем у обычной SSTC. Для накачки первичного контура используется генератор на полупроводниковых ключах — IGBT или MOSFET транзисторах.
В аббревиатурах названий катушек Теслы, питаемых постоянным током, часто присутствуют буквы DC, например DCSGTC.
QCW DRSSTC (Quasi Continious Wave) — особый тип транзисторных катушек Теслы, характеризующийся, так называемой, плавной накачкой: постепенным и плавным, (а не резким ударным, как в обычных катушках), нарастанием ряда параметров, (а именно: напряжения первичного контура и тока первичного контура, и, возможно, напряжения вторичного контура). В классической импульсной катушке Теслы рост тока в первичной обмотке обычно происходит в течение времени, сравнимым с длительностью периода (от 2—3 до 7—10 и более периодов) резонансной частоты, то есть, за время порядка десятков — сотен микросекунд. В QCW время нарастания составляет десятки миллисекунд, то есть, больше примерно на два порядка. Простым примером около-QCW являются ламповые катушки Теслы с шифтером. Из-за 50-герцового синуса на его выходе возникает эффект полуплавной накачки, которая обеспечивает довольно внушительный прирост длины разряда относительно типичного жёсткого прерывания (по катоду, или сетке). В результате данного приёма достигается характерный вид молний в виде длинных и практически прямых, мечевидных разрядов, длина которых многократно превышает длину намотки вторичной обмотки. Дело в том, что полное напряжение на терминале QCW DRSSTC никогда не достигает пробойного для вторички: оно всегда остаётся довольно небольшим, десятки киловольт или типа того. Возникший на небольшом напряжении стример продолжает подпитываться энергией в течение всего времени накачки, и поэтому растёт вверх, по силовым линиям поля, вместо того, чтобы пробиваться сбоку тороида на страйкринг. Именно для этого и делается плавная накачка в катушках Теслы. За счёт такого приёма достигается следующий эффект: вначале появляется небольшой разряд, который затем растёт не с высокой скоростью, пробивая плазменный канал в случайном направлении, а с низкой (так, что этот процесс развития можно даже заснять обычными видеокамерами), что обусловливает его неразветвление и огромную относительно длины вторичной обмотки длину. По сути, мы постоянно подогреваем небольшой возникший разряд, который удлиняется по мере перекачки энергии во вторичную обмотку. Но напряжение на выходе такой катушки Теслы невелико и не превышает десятков киловольт.
В отдельную категорию также относят магниферные катушки Теслы.
Разряд трансформатора Теслы Разряд с конца проводаВыходное напряжение трансформатора Теслы может достигать нескольких миллионов вольт. Это напряжение в частоте минимальной электрической прочности воздуха способно создавать внушительные электрические разряды в воздухе, которые могут иметь многометровую длину. Эти явления очаровывают людей по разным причинам, поэтому трансформатор Теслы используется как декоративное изделие.
Трансформатор использовался Теслой для генерации и распространения электрических колебаний, направленных на управление устройствами на расстоянии без проводов (радиоуправление), беспроводной передачи данных (радио) и беспроводной передачи энергии. В начале XX века трансформатор Теслы также нашёл популярное использование в медицине.[3][4] Пациентов обрабатывали слабыми высокочастотными токами, которые, протекая по тонкому слою поверхности кожи, не причиняли вреда внутренним органам (см.: скин-эффект, Дарсонвализация), оказывая при этом «тонизирующее» и «оздоравливающее» влияние.
Неверно считать, что трансформатор Теслы не имеет широкого практического применения. Он используется для поджига газоразрядных ламп и для поиска течей в вакуумных системах. Тем не менее, основное его применение в наши дни — познавательно-эстетическое. В основном это связано со значительными трудностями при необходимости управляемого отбора высоковольтной мощности или тем более передача её на расстояние от трансформатора, так как при этом устройство неизбежно выходит из резонанса, а также значительно снижается добротность вторичного контура.
Эффекты, наблюдаемые при работе трансформатора Теслы[править | править код]
Во время работы катушка Теслы создаёт красивые эффекты, связанные с образованием различных видов газовых разрядов. Многие люди собирают трансформаторы Теслы ради того, чтобы посмотреть на эти впечатляющие, красивые явления. В целом катушка Теслы производит 4 вида разрядов:
- Стримеры (от англ. Streamer) — тускло светящиеся тонкие разветвлённые каналы, которые содержат ионизированные атомы газа и отщеплённые от них свободные электроны. Протекает от терминала (или от наиболее острых, искривлённых ВВ-частей) катушки прямо в воздух, не уходя в землю, так как заряд равномерно стекает с поверхности разряда через воздух в землю. Стример — это, по сути дела, видимая ионизация воздуха (свечение ионов), создаваемая ВВ-полем трансформатора.
- Спарк (от англ. Spark) — это искровой разряд. Идёт с терминала (или с наиболее острых, искривлённых ВВ частей) непосредственно в землю или в заземлённый предмет. Представляет собой пучок ярких, быстро исчезающих или сменяющих друг друга нитевидных, часто сильно разветвлённых полосок — искровых каналов. Также имеет место особый вид искрового разряда — скользящий искровой разряд.
- Коронный разряд — свечение ионов воздуха в электрическом поле высокого напряжения. Создаёт красивое голубоватое свечение вокруг ВВ-частей конструкции с сильной кривизной поверхности.
- Дуговой разряд — образуется во многих случаях. Например, при достаточной мощности трансформатора, если к его терминалу близко поднести заземлённый предмет, между ним и терминалом может загореться дуга (иногда нужно непосредственно прикоснуться предметом к терминалу и потом растянуть дугу, отводя предмет на большее расстояние). Особенно это свойственно ламповым катушкам Теслы. Если катушка недостаточно мощна и надёжна, то спровоцированный дуговой разряд может повредить её компоненты.
Часто можно наблюдать (особенно вблизи мощных катушек), как разряды идут не только от самой катушки (её терминала и т. д.), но и в её сторону от заземлённых предметов. Также на таких предметах может возникать и коронный разряд. Редко можно наблюдать также тлеющий разряд. Интересно заметить, что некоторые ионные химические вещества, нанесённые на разрядный терминал, способны менять цвет разряда. Например, ионы натрия меняют обычный окрас спарка на оранжевый, а бора — на зелёный.
Работа резонансного трансформатора сопровождается характерным электрическим треском. Появление этого явления связано с превращением стримеров в искровые каналы (см. статью искровой разряд), который сопровождается резким возрастанием силы тока и количества энергии, выделяющейся в них. Каждый канал быстро расширяется, в нём скачкообразно повышается давление, в результате чего на его границах возникает ударная волна. Совокупность ударных волн от расширяющихся искровых каналов порождает звук, воспринимаемый как «треск» искры.
Являясь источником высокого напряжения, трансформатор Теслы может быть смертельно опасен. Особенно это касается сверхмощных ТТ с управлением на лампах или полевых транзисторах. В любом случае, даже для маломощных трансформаторов Тесла характерен выброс высоковольтной высокочастотной энергии, способной вызвать локальные повреждения кожного покрова в виде плохо заживающих ожогов. Для трансформаторов Тесла средней мощности (50-150 Ватт), такие ожоги могут привести к повреждению нервных окончаний и значительное повреждение подкожных слоев включая повреждение мышц и связок. Трансформаторы Тесла с искровым возбуждением менее опасны с точки зрения ожогов, однако, высоковольтные разряды следующие с паузами, наносят больший вред нервной системе и способны вызвать остановку сердца (у людей с проблемами сердца). В любом случае, вред, который могут нанести высокочастотные мощные генераторы, к которым относятся Трансформаторы Тесла, сугубо индивидуален и, зависит от особенностей организма и психического состояния конкретного человека.
Замечен факт, что женщины наиболее остро реагируют на излучения мощных радиочастотных устройств, соответственно и реакция на ТТ у женщин острее чем у мужчин[источник не указан 531 день]. К трансформатору Теслы, как к любому электроприбору, нельзя допускать детей без присмотра взрослых.
Однако существует и другое мнение[источник не указан 1896 дней], касающееся некоторых видов трансформаторов Теслы. Так как высокочастотное высокое напряжение имеет скин-эффект, то несмотря на потенциал в миллионы вольт, разряд в тело человека не может вызвать остановку сердца или другие серьёзные повреждения организма, несовместимые с жизнью.
В противоположность этому другие высоковольтные генераторы, например, высоковольтный умножитель телевизора и иные бытовые высоковольтные генераторы постоянного тока, имеющие несравненно меньшее выходное напряжение (порядка 25 кВ), могут являться смертельно опасными. Всё это потому, что в вышеуказанных преобразователях используется частота в 50 герц (в умножителе классического телевизора частота около 15кГц, в мониторах еще выше), следовательно, скин-эффект отсутствует, или исчезающе слаб, и ток потечёт через внутренние органы человека (опасным для жизни считается ток в десятки мА).
Несколько другая картина со статическим электричеством, которое может очень чувствительно ударить током при разряде (при прикосновении к металлу), но при этом не смертельно, так как статический заряд сравнительно небольшой, и протекающий ток не успеет нанести вред человеку (заряд равен произведению тока и времени).[источник не указан 1896 дней]Еще одна опасность, которая подстерегает при использовании трансформатора Теслы, — это избыток озона в крови, который может повлечь за собой головные боли, так как при работе устройства производятся большие порции этого газа.
В фильмах[править | править код]
В фильме Джима Джармуша «Кофе и сигареты» один из эпизодов строится на демонстрации трансформатора Теслы. По сюжету, Джек Уайт, гитарист и вокалист группы «The White Stripes» рассказывает Мег Уайт, барабанщице группы, о том, что земля является проводником акустического резонанса (теория электромагнитного резонанса — идея, которая занимала ум Теслы многие годы), а затем «Джек демонстрирует Мэг машину Тесла».
В фильме «Престиж» Кристофера Нолана, для победы одного иллюзиониста над другим в мастерстве «телепортации», Роберт Энджер (Хью Джекман), обращается к Николе Тесле за помощью. Никола же в свою очередь сделал ему машину, с трансформатором Теслы, у которой оказалась одна недоработка — она не телепортировала, а клонировала. Телепортация же была побочным эффектом.
В фильме «Ученик чародея» в одном из эпизодов демонстрируется музыкальное свойство катушек. Этот эффект достигается уменьшением и увеличением частоты.
В японском фильме «Легенда о маске» также присутствует трансформатор Теслы.
В фильме Три икса (xXx) в цитадели преступной организации, ночном клубе используют огромные трансформаторы Теслы, дающие внушительные разряды по всёму помещению, с декоративной целью.
В телесериале «Хранилище 13» главные герои используют трансформатор в виде оружия.
В фильме «Звуки шума» один из барабанщиков пробует играть на только что сделанной барабанной установке которая выдает электрические дуги в такт ударам по ней.
В фильме «Metallica: Сквозь невозможное» при исполнении песни «Ride the Lightning (песня)» были использованы трансформаторы Теслы для подачи разряда к подвешенному над сценой креслу, модель которого изображена на обложке альбома «Ride the Lightning».
В мультсериале «Смешарики: Пин-код» один из главных героев, Лосяш, создаёт аналог трансформатора Теслы — «Генератор Лосяша».
В компьютерных играх[править | править код]
В игре Kingdom Rush можно проапгрейдить обычную пушку до трансформатора Теслы.
В серии игр Command & Conquer: Red Alert советская сторона может строить оборонительное сооружение в виде башни со спиралевидным проводом (катушка Теслы), которая поражает противника мощными электрическими разрядами. Ещё в игре присутствуют танки (танк Теслы) и пехотинцы (солдат Теслы), использующие эту технологию. В игре Command & Conquer Red Alert 3 — Uprising есть скаты, это боевые амфибии оснащенные орудиями Тесла. Также в игре Tremulous люди (Humans) могут строить трансформаторы Теслы для защиты своих баз.
В играх серии Wolfenstein есть оружие, именуемое «Орудие Тесла», поражающее противника электрическим разрядом на большом расстоянии.
В игре Tomb Raider: Legend на одном из уровней есть статичные «установки Тесла» их можно использовать для притягивания и поднятия тяжелых объектов (почти также, как в «Half-Life 2»). А также с помощью одной из них можно умертвить огромного монстра-босса.
В модификации Half-Life 2 Dystopia также существует оружие «Tesla Gun», способное создавать разряды и в режиме альтернативной стрельбы — шаровые молнии. Состоит из цевья и металлического шара вместо дула, внешне похожего на сферическую астролябию.
В игре Fallout присутствует броня Теслы, также она есть и в игре Arcanum, также в загружаемом дополнении «Broken Steel» для игры «Fallout 3» присутствует пушка Теслы и сама катушка Теслы. В игре Fallout New Vegas это оружие можно приобрести в некоторых магазинах, например у Ван Граффов или у оружейников, в дополнении Fallout: New Vegas — Old World Blues, мозг главного героя заменили на катушку Теслы передающею сигналы мозга героя.
В игре Arcanum (жанр RPG) существуют соответствующие запчасти (Tesla coil и т. п.) и виды вооружения (Tesla rod, Tesla gun и т. п.), различные электрические щиты и т. п. Они имеют свойство наносить особый тип повреждений — electric damage.
В первой редакции игры Blood также присутствовало оружие под названием Tesla, поражавшее противника либо молниевидным разрядом, либо неким подобием шаровой молнии.
В игре Вивисектор присутствует оружие, называемое «Тесла», бьющее электрическим разрядом по противнику.
В игре Quake 4 есть оружие Lightning Gun, генерирующее электрический разряд, аннигилирующий слабых противников.
В игре Nancy Drew: Secret of the Old Clock, используется как вход в «тайный» чердак.
В игре Assassin’s Creed 2 при прохождении Истины рассказывается выдуманная история о Никола Тесле, якобы он получил всемогущий артефакт, но позже его отняли потомки тамплиеров. Также во время прохождении Истины появляются 2 фотографии трансформатора Теслы.
В игре Xenus: Точка кипения при прохождении последних заданий, в одной из комнат стоит огромная катушка Теслы.
В игре SCP-Containment Breach в коридорах могут сгенерироваться Тесла-ворота, которые при приближении к ним сразу убивают игрока.
В игре Minecraft с дополнением (модом) IndustrialCraft можно скрафтить катушку Теслы, которая вызывает смерть всем существам, находящимся в радиусе 4 блоков от катушки, а с дополнением (модом) GregTech можно скрафтить посох Теслы, который сжигает заряд брони другого игрока.
В игре Dishonored есть ТТ на различных уровнях, также есть миссия связанная с этим трансформатором
В игре Nancy Drew: The Deadly Device сюжет завязывается вокруг трансформатора Теслы, от которого погибает учёный.
В игре Clash of Clans есть защитное сооружение «Потайная Тесла», которая бьет нападающие войска электрическими разрядами, также в игре Clash Royal от разработчиков Clash of Clans существует персонаж Спарки (Sparky) который стреляет шаром электричества.
В игре Overwatch один из персонажей Винстон использует оружие, напоминающие катушку Тесла. Механика подразумевает бой на ближних дистанциях, из-за не дальнобойности электрических молний. Так же, такое оружие бьет сквозь любые барьеры и щиты, что обуславливается особенностями электрических молний.
В игре Alien Swarm присутствует катушка тесла, которая и поражает приближающихся противников электрическими разрядами, а также пушка тесла.
В музыкальном искусстве[править | править код]
Российская группа Tesla Musiс Band записала первый в мире музыкальный альбом с оригинальным звучанием музыкального трансформатора Теслы[5]. Также группа Tesla Music Band использует музыкальные трансформаторы Теслы в создании шоу[6].
Американская группа ARC ATTACK использует трансформаторы Теслы в качестве источника звуков. То есть разряд, создаваемый трансформатором, может звучать, «петь».
Российская команда Tesla-FX утверждает, что впервые[7][нет в источнике] сыграла гимн России[8] на созданном ими музыкальном трансформаторе Теслы.
(ещё гимн России на трансформаторе Теслы: https://www.youtube.com/watch?v=QFFgeQ3ptLQ)
Для записи песни «Thunderbolt» с альбома Biophilia певица Бьорк также использовала катушку Теслы для создания звуков, имитирующих разряды молний[9].
В шоу-бизнесе[править | править код]
Трансформатор Теслы может применяться для создания спецэффектов в различных шоу. Шоу Full-Moon-Party с использованием двух трансформаторов Теслы прошло в ночь с 13 на 14 августа 2011 года в Москве в клубе Arena-Moscow[10][11]. Первое в России шоу[12] с трансформаторами Теслы состоялось 21 мая 2011 г. на презентации нового Ferrari FF в подмосковной Барвихе.
Катушка Тесла. Устройство и виды. Работа и применение
Одним из знаменитых изобретений Николы Тесла была катушка Тесла. Это изобретение представляет собой резонансный трансформатор, который образует высокочастотное повышенное напряжение. В 1896 году на изобретение выдан патент, который имел название аппарата для образования электрического тока высокого потенциала и частоты.
Разновидности
Со времен Николы Тесла появилось много различных видов трансформаторов Тесла. Рассмотрим распространенные основные виды таких трансформаторов, как катушка Тесла.
SGTC – катушка, работающая на искровом разряде, имеет классическое устройство, используемое самим Теслой. В этой конструкции элементом коммутации является разрядник. У маломощных устройств разрядник выполнен в виде двух отрезков толстого проводника, находящихся на определенном расстоянии. В устройствах большей мощности используются вращающиеся разрядники сложной конструкции с применением электродвигателей. Такие трансформаторы производят при необходимости получения стримера большой длины, без каких-либо эффектов.
VTTC – катушка на основе электронной лампы, которая является коммутирующим элементом. Подобные трансформаторы способны функционировать в постоянном режиме и выдавать разряды большой толщины. Такой тип питания обычно применяют для создания катушек высокой частоты. Они создают эффект стримера в виде факела.
SSTC – катушка, в конструкции которой в качестве ключа используется полупроводниковый элемент в виде мощного транзистора. Такой вид трансформаторов также способен функционировать в постоянном режиме. Внешняя форма стримеров от такого устройства бывает самой различной. Управление с полупроводниковым ключом более простое, существуют такие катушки Тесла, которые умеют играть музыку.
DRSSTC – трансформатор, имеющий два контура резонанса. Роль ключей играют также полупроводниковые компоненты. Это наиболее сложный в настройке и управлении трансформатор, однако, он используется для создания впечатляющих эффектов. При этом большой резонанс получается в первом контуре. Во втором контуре образуется наиболее яркие толстые и длинные стримеры в виде молний.
Устройство и работа
Элементарный трансформатор Тесла включает в себя две катушки, тороид, конденсатор, разрядник, защитное кольцо и заземление.
Тороид выполняет несколько функций:
- Снижение частоты резонанса, особенно для вида катушки Тесла с полупроводниковыми ключами.Полупроводниковые элементы плохо функционируют на повышенных частотах.
- Накапливание энергии перед возникновением электрической дуги. Чем больше размер тороида, тем больше энергии накоплено. В момент пробоя воздуха тороид выдает эту накопленную энергию в электрическую дугу, при этом увеличивая ее.
- Образование электростатического поля, отталкивающего дугу от вторичной обмотки. Часть этой функции исполняет вторичная обмотка. Однако тороид помогает ей в этом. Поэтому электрическая дуга не бьет во вторичную обмотку по кратчайшему пути.
Обычно наружный диаметр тороида в два раза больше диаметра вторичной обмотки. Тороиды производят из алюминиевой гофры и других материалов.
Вторичная обмотка трансформатора Тесла является основным элементом конструкции. Обычно длина обмотки относится к ее диаметру 5 : 1. Диаметр проводника для катушки выбирают из расчета, чтобы разместилось около 1000 витков, которые должны располагаться плотно между собой. Витки обмотки покрывают несколькими слоями лака или эпоксидной смолы. В качестве каркаса выбирают ПВХ-трубы, которые можно купить в строительном магазине.
Защитное кольцо служит для предохранения от выхода из строя электронных элементов в случае попадания электрической дуги в первичную обмотку. Защитное кольцо устанавливается, если размер стримера (электрической дуги) больше длины вторичной катушки. Это кольцо выполнено в виде медного незамкнутого проводника, заземленного отдельным проводом на общее заземление.
Первичная обмотка чаще всего выполняется из медной трубки, применяемой в кондиционерах. Сопротивление первичной обмотки должно быть небольшим, так как по ней будет проходить большая сила тока. Трубку чаще всего выбирают толщиной 6 мм. Также можно использовать для намотки проводники большого сечения. Первичная обмотка является своеобразным элементом подстройки в таких катушках Тесла, в которых первый контур резонансный. Поэтому место подключения питания выполняют с учетом его перемещения, с помощью которого меняют частоту резонанса первого контура.
Форма первичной обмотки может быть различной: конической, плоской или цилиндрической.
Катушка Тесла должна иметь заземление. Если его не будет, то стримеры будут бить в саму катушку, для замыкания тока.
Колебательный контур образован конденсатором совместно с первичной обмоткой. В этот контур также подключен разрядник, который является нелинейным элементом. Во вторичной обмотке также образован контур колебаний, в котором конденсатором выступает емкость тороида и межвитковая емкость катушки. Чаще всего для предохранения от электрического пробоя вторичную обмотку покрывают лаком или эпоксидной смолой.
В результате катушка Тесла, или другими словами трансформатор, состоит из двух контуров колебаний, связанных между собой. Это и придает трансформатору Тесла необычные свойства, и является основным отличительным качеством от обычных трансформаторов.
При достижении напряжения пробоя между электродами разрядника, образуется электрический лавинообразный пробой газа. При этом происходит разряд конденсатора на катушку через разрядник. Вследствие этого цепь контура колебаний, который состоит из конденсатора и первичной обмотки, остается замкнутой на разрядник. В этой цепи возникают колебания высокой частоты. Во вторичной цепи образуются резонансные колебания, в результате чего возникает высокое напряжение.
Во всех видах катушки Тесла главным элементом являются контуры: первичный и вторичный. Однако генератор колебаний высокой частоты может отличаться по конструкции.
Катушка Тесла по сути дела состоит из двух катушек, не имеющих металлического сердечника. Коэффициент трансформации катушки Тесла в несколько десятков раз выше отношения числа витков обеих обмоток. Поэтому выходное напряжение трансформатора достигает нескольких миллионов вольт, что и обеспечивает мощные электрические разряды длиной в несколько метров. Важным условием является образование контура колебаний первичной обмоткой и конденсатором, вхождение в резонанс этого контура с вторичной обмоткой.
Виды эффектов от катушки Тесла
- Дуговой разряд – возникает во многих случаях. Он характерен ламповым трансформаторам.
- Коронный разряд является свечением воздушных ионов в электрическом поле повышенного напряжения, образует голубоватое красивое свечение вокруг элементов устройства с высоким напряжением, а также имеющим большую кривизну поверхности.
- Спарк по-другому называют искровым разрядом. Он протекает от терминала на землю, либо на заземленный предмет, в виде пучка ярких разветвленных полосок, быстро исчезающих или меняющихся.
- Стримеры – это тонкие слабо светящиеся разветвляющиеся каналы, содержащие ионизированные атомы газа и свободные электроны. Они не уходят в землю, а протекают в воздух. Стримером называют ионизацию воздуха, образуемую полем трансформатора высокого напряжения.
Действие катушки Тесла сопровождается треском электрического тока. Стримеры могут превращаться в искровые каналы. Это сопровождается большим увеличением тока и энергии. Канал стримера быстро расширяется, давление резко повышается, поэтому образуется ударная волна. Совокупность таких волн подобен треску искр.
Малоизвестные эффекты катушки Тесла
Некоторые люди считают трансформатор Тесла каким-то особенным устройством, обладающим исключительными свойствами. Также есть мнение, что такое устройство способно стать генератором энергии и вечным двигателем.
Иногда говорят, что при помощи такого трансформатора можно передавать электрическую энергию на значительные расстояния, не используя провода, а также создать антигравитацию. Такие свойства не подтверждены и не проверены наукой, но Тесла говорил о скорой доступности таких способностей для человека.
В медицине при длительном воздействии токов высокой частоты и напряжения могут образоваться хронические заболевания и другие отрицательные явления. Также нахождение человека в поле высокого напряжения негативно сказывается на его здоровье. Можно отравиться газами, выделяемыми при функционировании трансформатора без вентиляции.
Применение
- Величина напряжения на выходе катушки Тесла иногда достигает миллионов вольт, что формирует значительные воздушные электрические разряды длиной в несколько метров. Поэтому такие эффекты применяют в качестве создания показательных шоу.
- Катушка Тесла нашла применение в медицине в начале прошлого века. Больных обрабатывали маломощными токами высокой частоты. Такие токи протекают по поверхности кожи, оказывают оздоравливающее и тонизирующее влияние, не причиняя при этом никакого вреда организму человека. Однако мощные токи высокой частоты оказывают негативное влияние.
- Катушка Тесла применяется в военной технике для оперативного уничтожения электронной техники в здании, на корабле, танке. При этом на короткий промежуток времени создается мощный импульс электромагнитных волн. В результате в радиусе нескольких десятков метров сгорают транзисторы, микросхемы и другие электронные компоненты. Это устройство действует абсолютно бесшумно. Существуют такие данные, что частота тока при функционировании такого устройства может достигать 1 ТГц.
- Иногда такой трансформатор применяется для розжига газоразрядных ламп, а также поиска течи в вакууме.
Эффекты катушки Тесла иногда используют в съемках фильмов, компьютерных играх. В настоящее время катушка Тесла не нашла широкого применения на практике в быту.
Катушка Тесла на будущее
В настоящее время остаются актуальными вопросы, которыми занимался ученый Тесла. Рассмотрение этих проблемных вопросов дает возможность студентам и инженерам институтов взглянуть на проблемы науки более широко, структурировать и обобщать материал, отказаться от шаблонных мыслей.
Взгляды Тесла актуальны сегодня не только в технике и науке, но и для работ в новых изобретениях, применения новых технологий на производстве. Наше будущее даст объяснение явлениям и эффектам, открытым Теслой. Он заложил для третьего тысячелетия основы новейшей цивилизации.
Похожие темы
Катушка тесла — это… Что такое Катушка тесла?
Разряды с провода на терминале
Трансформа́тор Те́сла — единственное из изобретений Николы Тесла, носящих его имя сегодня. Это классический резонансный трансформатор, производящий высокое напряжение при высокой частоте. Оно использовалось Теслой в нескольких размерах и вариациях для его экспериментов. «Трансформатор Тесла» также известен под названием «катушка Теслы» (англ. Tesla coil). В России часто используют следующие сокращения: ТС (от Tesla coil), КТ (катушка Тесла), просто тесла и даже ласкательно — катька. Прибор был заявлен патентом № 568176 от 22 сентября 1896 года, как «Аппарат для производства электрических токов высокой частоты и потенциала».
Описание конструкции
Схема простейшего трансформатора Теслы
В элементарной форме трансформатор Теслы состоит из двух катушек, первичной и вторичной, и обвязки, состоящей из разрядника (прерывателя, часто встречается английский вариант Spark Gap), конденсатора, тороида (используется не всегда) и терминала (на схеме показан как «выход»).
Первичная катушка построена из 5—30 (для VTTC — катушки Теслы на лампе — число витков может достигать 60) витков провода большого диаметра или медной трубки, а вторичная из многих витков провода меньшего диаметра. Первичная катушка может быть плоской (горизонтальной), конической или цилиндрической (вертикальной). В отличие от многих других трансформаторов, здесь нет никакого ферромагнитного сердечника. Таким образом, взаимоиндукция между двумя катушками гораздо меньше, чем у обычных трансформаторов с ферромагнитным сердечником. У данного трансформатора также практически отсутствует магнитный гистерезис, явления задержки изменения магнитной индукции относительно изменения тока и другие недостатки, вносимые присутствием в поле трансформатора ферромагнетика.
Первичная катушка вместе с конденсатором образует колебательный контур, в который включён нелинейный элемент — разрядник (искровой промежуток). Разрядник, в простейшем случае, обыкновенный газовый; выполненный обычно из массивных электродов (иногда с радиаторами), что сделано для большей износостойкости при протекании больших токов через электрическую дугу между ними.
Вторичная катушка также образует колебательный контур, где роль конденсатора выполняет ёмкостная связь между тороидом, оконечным устройством, витками самой катушки и другими электропроводящими элементами контура с Землей. Оконечное устройство (терминал) может быть выполнено в виде диска, заточенного штыря или сферы. Терминал предназначен для получения предсказуемых искровых разрядов большой длины. Геометрия и взаимное положение частей трансформатора Теслы сильно влияет на его работоспособность, что аналогично проблематике проектирования любых высоковольтных и высокочастотных устройств.
Функционирование
Трансформатор Теслы рассматриваемой простейшей конструкции, показанной на схеме, работает в импульсном режиме. Первая фаза — это заряд конденсатора до напряжения пробоя разрядника. Вторая фаза — генерация высокочастотных колебаний.
Заряд
Заряд конденсатора производится внешним источником высокого напряжения, защищённым дросселями и построенным обычно на базе повышающего низкочастотного трансформатора. Так как часть электрической энергии, накопленной в конденсаторе, уйдёт на генерацию высокочастотных колебаний, то ёмкость и максимальное напряжение на конденсаторе пытаются максимизировать. Напряжение заряда ограничено напряжением пробоя разрядника, которое (в случае воздушного разрядника) можно регулировать, изменяя расстояние между электродами или их форму. Типовое максимальное напряжение заряда конденсатора — 2-20 киловольт. Знак напряжения для заряда обычно не важен, так как в высокочастотных колебательных контурах электролитические конденсаторы не применяются. Более того, во многих конструкциях знак заряда меняется с частотой бытовой сети электроснабжения (50 или 60 Гц).
Генерация
После достижения между электродами разрядника напряжения пробоя в нём возникает лавинообразный электрический пробой газа. Конденсатор разряжается через разрядник на катушку. После разряда конденсатора напряжение пробоя разрядника резко уменьшается из-за оставшихся в газе носителей заряда. Практически, цепь колебательного контура первичной катушки остаётся замкнутой через разрядник, до тех пор, пока ток создаёт достаточное количество носителей заряда для поддержания напряжения пробоя существенно меньшего, чем амплитуда напряжения колебаний в LC контуре. Колебания постепенно затухают, в основном из-за потерь в разряднике и ухода электромагнитной энергии на вторичную катушку. Во вторичной цепи возникают резонансные колебания, что приводит к появлению на терминале высоковольтного высокочастотного напряжения!
Модификации
Для мощных трансформаторов Теслы наряду с обычными разрядниками (статическими) используются более сложные конструкции разрядника. Например, RSG (от англ. Rotary Spark Gap, можно перевести как роторный/вращающийся искровой промежуток) или статический искровой промежуток с дополнительными дугогасительными устройствами. В конструкции роторного искрового промежутка используется двигатель (обычно это электродвигатель), вращающий диск с электродами, которые приближаются (или просто замыкают) к ответным электродам для замыкания первичного контура. Скорость вращения вала и расположение контактов выбираются исходя из необходимой частоты следования пачек колебаний. Различают синхронные и асинхронные роторные искровые промежутки в зависимости от управления двигателем. Также использование вращающегося искрового промежутка сильно снижает вероятность возникновения паразитной дуги между электродами. Иногда обычный статический разрядник заменяют многоступенчатым статическим разрядником. Для охлаждения разрядников их иногда помещают в жидкие или газообразные диэлектрики (например, в масло). Типовой прием для гашения дуги в статическом разряднике — это продувка электродов мощной струей воздуха. Иногда классическую конструкцию дополняют вторым, защитным разрядником. Его задача — защита питающей (низковольтной части) от высоковольтных выбросов.
В качестве генератора ВЧ напряжения, в современных трансформаторах Теслы используют ламповые (VTTC — Vacuum Tube Tesla Coil) и транзисторные (SSTC — Solid State Tesla Coil, DRSSTC — Dual Resonance SSTC) генераторы. Это даёт возможность уменьшить габариты установки, повысить управляемость, снизить уровень шума и избавиться от искрового промежутка. Также существует разновидность трансформаторов Теслы, питаемая постоянным током. В аббревиатурах названий таких катушек присутствуют буквы DC, например DCDRSSTC. В отдельную категорию также относят магниферные катушки Теслы.
Многие разработчики в качестве прерывателя (разрядника) используют управляемые электронные компоненты, такие как транзисторы, модули на MOSFET транзисторах, электронные лампы, тиристоры.
Использование трансформатора Теслы
Разряд трансформатора Теслы
Разряд с конца провода
Выходное напряжение трансформатора Теслы может достигать нескольких миллионов вольт. Это напряжение в резонансной частоте способно создавать внушительные электрические разряды в воздухе, которые могут иметь многометровую длину. Эти явления очаровывают людей по разным причинам, поэтому трансформатор Теслы используется как декоративное изделие.
Трансформатор использовался Теслой для генерации и распространения электрических колебаний, направленных на управление устройствами на расстоянии без проводов (радиоуправление), беспроводной передачи данных (радио) и беспроводной передачи энергии. В начале XX века трансформатор Теслы также нашёл популярное использование в медицине. Пациентов обрабатывали слабыми высокочастотными токами, которые протекая по тонкому слою поверхности кожи не причиняют вреда внутренним органам (см. Скин-эффект), оказывая при этом тонизирующее и оздоравливающее влияние.[1] Последние исследования механизма воздействия мощных ВЧ токов на живой организм показали негативность их влияния.[2]
В наши дни трансформатор Теслы не имеет широкого практического применения. Он изготовляется многими любителями высоковольтной техники и сопровождающих её работу эффектов. Также он иногда используется для поджига газоразрядных ламп и для поиска течей в вакуумных системах.
- ↑ Однако необходимо знать, какие напряжения и диапазоны частот безвредны для организма
- ↑ Появление злокачественных опухолей (рака)
Трансформатор Теслы используется военными для быстрого уничтожения всей электроники в здании,танке,корабле.Создается на доли секунды мощный электромагнитный импульс в радиусе нескольких десятков метров.В результате перегорают все микросхемы и транзисторы,полупроводниковая электроника.Данное устройство работает совершенно бесшумно.В прессе появилось сообщение, что частота тока при этом достигает 1 Терагерц.
Эффекты, наблюдаемые при работе трансформатора Теслы
Во время работы катушка Теслы создаёт красивые эффекты, связанные с образованием различных видов газовых разрядов. Многие люди собирают трансформаторы Теслы ради того, чтобы посмотреть на эти впечатляющие, красивые явления. В целом катушка Теслы производит 4 вида разрядов:
- Стримеры (от англ. Streamer) — тускло светящиеся тонкие разветвлённые каналы, которые содержат ионизированные атомы газа и отщеплённые от них свободные электроны. Протекает от терминала (или от наиболее острых, искривлённых ВВ-частей) катушки прямо в воздух, не уходя в землю, так как заряд равномерно стекает с поверхности разряда через воздух в землю. Стример — это, по сути дела, видимая ионизация воздуха (свечение ионов), создаваемая ВВ-полем трансформатора.
- Спарк (от англ. Spark) — это искровой разряд. Идёт с терминала (или с наиболее острых, искривлённых ВВ частей) непосредственно в землю или в заземлённый предмет. Представляет собой пучок ярких, быстро исчезающих или сменяющих друг друга нитевидных, часто сильно разветвлённых полосок — искровых каналов. Также имеет место быть особый вид искрового разряда — скользящий искровой разряд.
- Коронный разряд — свечение ионов воздуха в электрическом поле высокого напряжения. Создаёт красивое голубоватое свечение вокруг ВВ-частей конструкции с сильной кривизной поверхности.
- Дуговой разряд — образуется во многих случаях. Например, при достаточной мощности трансформатора, если к его терминалу близко поднести заземлённый предмет, между ним и терминалом может загореться дуга (иногда нужно непосредственно прикоснуться предметом к терминалу и потом растянуть дугу, отводя предмет на большее расстояние). Особенно это свойственно ламповым катушкам Теслы. Если катушка недостаточно мощна и надёжна, то спровоцированный дуговой разряд может повредить её компоненты.
Часто можно наблюдать (особенно вблизи мощных катушек), как разряды идут не только от самой катушки (её терминала и т. д.), но и в её сторону от заземлённых предметов. Также на таких предметах может возникать и коронный разряд. Редко можно наблюдать также тлеющий разряд. Интересно заметить, что разные химические вещества, нанесённые на разрядный терминал, способны менять цвет разряда. Например, натрий меняет обычный окрас спарка на оранжевый, а бром — на зелёный.
Работа резонансного трансформатора сопровождается характерным электрическим треском. Появление этого явления связано с превращением стримеров в искровые каналы (см. статью искровой разряд), который сопровождается резким возрастанием силы тока и количества энергии, выделяющегося в них. Каждый канал быстро расширяется, в нём скачкообразно повышается давление, в результате чего на его границах возникает ударная волна. Совокупность ударных волн от расширяющихся искровых каналов порождает звук, воспринимаемый как «треск» искры.
Неизвестные эффекты трансформатора Теслы
Многие люди считают, что катушки Теслы — это особенные артефакты с исключительными свойствами. Существует мнение, что трансформатор Теслы может быть генератором свободной энергии и является вечным двигателем, исходя из того, что сам Тесла считал, что его генератор берёт энергию из эфира (особой невидимой материи в которой распространяются электромагнитные волны) через искровой промежуток. Иногда можно услышать, что с помощью «Катушки Теслы» можно создать антигравитацию и эффективно передавать электроэнергию на большие расстояния без проводов. Данные свойства пока никак не проверены и не подтверждены наукой. Однако, сам Тесла говорил о том, что такие способности скоро будут доступны человечеству с помощью его изобретений. Но впоследствии посчитал, что люди не готовы к этому.
Также очень распространён тезис о том, что разряды, испускаемые трансформаторами Теслы, полностью безопасны, и их можно трогать руками. Это не совсем так. В медицине также используют «катушки Теслы» для оздоровления кожи. Это лечение имеет положительные плоды и благотворно действует на кожу, но конструкция медицинских трансформаторов сильно разнится с конструкцией обычных. Лечебные генераторы отличает очень высокая частота выходного тока, при которой толщина скин-слоя (см. Скин-эффект) безопасно мала, и крайне малая мощность. А толщина скин-слоя для среднестатистической катушки Теслы составляет от 1 мм до 5 мм и её мощности хватит для того, чтобы разогреть этот слой кожи, нарушить естественные химические процессы. При долгом воздействии подобных токов могут развиться серьёзные хронические заболевания, злокачественные опухоли и другие негативные последствия. Кроме того, надо отметить, что нахождение в ВЧ ВВ поле катушки (даже без непосредственного контакта с током) может негативно влиять на здоровье. Важно отметить, что нервная система человека не воспринимает высокочастотный ток и боль не чувствуется, но тем не менее это может положить начало губительным для человека процессам. Также существует опасность отравления газами, образующимися во время работы трансформатора в закрытом помещении без притока свежего воздуха. Плюс ко всему, можно обжечься, так как температуры разряда обычно достаточно для небольшого ожога (а иногда и для большого), и если человек всё же захочет «поймать» разряд, то это следует делать через какой-нибудь проводник (например, металлический прут). В этом случае непосредственного контакта горячего разряда с кожей не будет, и ток сначала потечет через проводник и только потом через тело.
Трансформатор Теслы в культуре
В фильме Джима Джармуша «Кофе и сигареты» один из эпизодов строится на демонстрации трансформатора Теслы. По сюжету, Джек Уайт, гитарист и вокалист группы «The White Stripes» рассказывает Мег Уайт, барабанщице группы о том, что земля является проводником акустического резонанса (теория электромагнитного резонанса — идея, которая занимала ум Теслы многие годы), а затем «Джек демонстрирует Мэг машину Теслы».
В игре Command & Conquer: Red Alert советская сторона может строить оборонительное сооружение в виде башни со спиралевидным проводом, которая поражает противника мощными электрическими разрядами. Еще в игре присутствуют танки и пехотинцы, использующие эту технологию. Tesla coil (в одном из переводов — башня Тесла) является в игре исключительно точным, мощным и дальнобойным оружием, однако потребляет относительно высокое количество энергии. Для увеличения мощности и дальности поражения можно «заряжать» башни. Для этого отдайте приказ Воину Тесла (это пехотинец) подойти и постоять рядом с башней. Когда воин дойдет до места, он начнет зарядку башни. При этом анимация будет как при атаке, но молнии из его рук будут желтого цвета.
Также в игре
В игре Return to Castle Wolfenstein есть оружие, именуемое «Тесла», поражающее противника электрическим разрядом на большом расстоянии.
В игре Tomb Raider: Legend на одном из уровней есть статичные «Установки Тесла» их можно использовать для притягивания и поднятия тяжелых объектов (почти также, как в Half-Life 2). А также с помощью одной из них можно умертвить огромного монстра-босса.
В первой редакции игры
Ссылки
См. также
Wikimedia Foundation. 2010.
Что такое катушка Тесла? | Катушка Мишина и генератор синуса
Катушка Тесла впервые была изготовлена в 1891 году. Патент № 568176 был оформлен в США Николой Теслой 22 сентября 1896 года. Тесла исследовал высокочастотные токи и его катушка была создана именно с этой целью — для производства и передачи высокочастотных токов через атмосферу без проводов.
Это изобретение ещё называют трансформатором Теслы, т. к. эта катушка преобразует низкочастотные токи в высокочастотные, используя принцип резонанса. Т.е. по сути она является трансформатором. И задача подобного устройства — генерировать на выходе высокочастотное напряжение большой мощности.
Катушка Тесла вырабатывает стоячие электромагнитные волны. Это свойство было использовано нашим учёным — Александром Мишиным. Он создал свой прибор на принципах, заложенных в исследованиях Теслы. Плоский диск Мишина конструктивно напоминает бифилярную катушку Тесла. Генератор синуса подает специфический сигнал на эту катушку. Это устройство было названо катушкой Мишина. Подробнее о катушке Мишина можно прочитать в этой статье.
Устройство катушки Тесла
В настоящее время существует много схем, по которым изготовливают катушки Тесла. Наиболее простой трансформатор Тесла состоит и следующих элементов:
- Источник питания
- Трансформатор
- Конденсаторы
- Первичная и вторичная обмотки катушки
- Тороид
Разрядник - Заземление
Вторичная обмотка катушки
Наиболее значимым элементом в катушке Тесла является вторичная обмотка. Можно своими руками изготовить трансформатор Тесла. Сначала нам потребуется найти каркас-основу для вторичной обмотки. Для этого хорошо подойдет пластиковая канализационная труба. Соотношение длины к диаметру трубы должно быть от 4:1 до 5:1.Т.е. длина каркаса должна превышать диаметр в 4-5 раз.
На такую трубу надо намотать порядка 1000 витков проволоки. Для обмотки лучше брать медный провод в изоляции диаметром от 0,08 до 0,3 мм. Намотка должна быть аккуратной, плотной, без перехлёстов. После того, как обмотка закончена, следует покрыть её несколькими слоями лака. Это предохранит обмотку от физических повреждений и от пробоев электричества.
Первичная обмотка
Для первичной обмотки можно взять медную трубку толстого диаметра или толстый кабель. Для не слишком сильных трансформаторов Тесла подойдет медная трубка или провод диаметром 5-6 мм. Если планируется более мощная катушка, то диаметр трубы или провода для намотки увеличивают исходя из планируемой мощности.
Для первичной обмотки потребуется всего несколько витков провода или медной трубки. Обычно делают от 3-х до 10 витков. По своей форме первичную обмотку можно делать как цилиндрическую, так и в виде конуса или изготовить в одной плоскости.
Другие элементы трансформатора Тесла
Тороид создает поле статического электричества. Помогает накапливать энергию для разряда . А также применение тороида в конструкции катушки Тесла защищает вторичную обмотку. Статическое электричество, создаваемое тороидом, отталкивает ионизированные газовые каналы, возникающие на тороиде или разряднике — стримеры. Эти стримеры можно наблюдать в виде тонких светящихся нитей.
Можно вместо тороида поставить простой разрядник. Он изготавливается в виде заостренного металлического штырька. Для небольших трансформаторов Тесла хорошо подойдет шарик от пинг-понга, обмотанный фольгой. Один из концов проволоки от вторичной обмотки подсоединяют к фольге этого шарика.
Чтобы защитить от попадания стримеров на первичную обмотку можно поставить кольцо защиты. Такое защитное кольцо изготовляется из одного медного витка. Проволока должна быть потолще диаметром, чем материал первичной обмотки. А диаметр самого защитного кольца делают шире диаметра первичной обмотки катушки. Кольцо защиты надо заземлить.
Существует множество модификаций катушки Тесла. В продаже такие катушки стоят очень дорого и применяются для демонстрации дуговых разрядов, спарков (искровой разряд), коронных разрядов и светящихся ионизированных газовых каналов — стримеров. Любители своими руками изготавливают катушки Тесла. Существует множество схем и видео того, как это можно сделать в домашних условиях.
Но во всех схемах основа остается неизменной. Это сама катушка из 2-х обмоток, разрядник, источник питания и еще пара элементов. Это не сложно сделать, и каждый, кто умеет держать паяльник в руках, способен на это. А с помощью такой катушки можно удивлять друзей, показывая фокусы, зажигая лампочку без проводов в своих руках. В этой статье читайте о том, как изготовить простую катушку Тесла в домашних условиях.
Катушка Тесла. Краткая теория | RadioLaba.ru
Катушка Тесла представляет собой высокочастотный резонансный трансформатор без ферромагнитного сердечника, с помощью которого можно получить высокое напряжение на вторичной обмотке. Под действием высокого напряжения в воздухе происходит электрический пробой, подобно разряду молнии. Устройство изобретено Николой Теслой, и носит его имя.
По типу коммутирующего элемента первичного контура, катушки Тесла подразделяются на искровые (SGTC – Spark gap Tesla coil), ламповые (VTTC – Vacuum tube Tesla coil), транзисторные (SSTC – Solid state Tesla coil, DRSSTC – Dual resonant solid state Tesla coil). Я буду рассматривать только искровые катушки, являющиеся самыми простыми и распространенными. По способу заряда контурного конденсатора, искровые катушки делятся на 2 типа: ACSGTC – Spark gap Tesla coil, а также DCSGTC – Spark gap Tesla coil. В первом варианте, заряд конденсатора осуществляется переменным напряжением, во втором используется резонансный заряд с подведением постоянного напряжения.
Сама катушка представляет собой конструкцию из двух обмоток и тора. Вторичная обмотка цилиндрическая, наматывается на диэлектрической трубе медным обмоточным проводом, в один слой виток к витку, и имеет обычно 500-1500 витков. Оптимальное соотношение диаметра и длины обмотки равно 1:3,5 – 1:6. Для увеличения электрической и механической прочности, обмотку покрывают эпоксидным клеем или полиуретановым лаком. Обычно размеры вторичной обмотки определяют исходя из мощности источника питания, то есть высоковольтного трансформатора. Определив диаметр обмотки, из оптимального соотношения находят длину. Далее подбирают диаметр обмоточного провода, так чтобы количество витков примерно равнялось общепринятому значению. В качестве диэлектрической трубы обычно применяют канализационные пластиковые трубы, но можно изготовить и самодельную трубу, при помощи листов чертежного ватмана и эпоксидного клея. Здесь и далее речь идет о средних катушках, мощностью от 1 кВт и диаметром вторичной обмотки от 10 см.
На верхний конец трубы вторичной обмотки устанавливают полый проводящий тор, обычно выполненный из алюминиевой гофрированной трубы для отвода горячих газов. В основном диаметр трубы подбирают равным диаметру вторичной обмотки. Диаметр тора обычно составляет 0,5-0,9 от длины вторичной обмотки. Тор имеет электрическую емкость, которая определяется его геометрическими размерами, и выступает в роли конденсатора.
Первичная обмотка располагается у нижнего основания вторичной обмотки, и имеет спиральную плоскую или коническую форму. Обычно состоит из 5-20 витков толстого медного или алюминиевого провода. В обмотке протекают высокочастотные токи, вследствие чего скин-эффект может иметь значительное влияние. Из-за высокой частоты ток распределяется преимущественно в поверхностном слое проводника, тем самым уменьшается эффективная площадь поперечного сечения проводника, что приводит к увеличению активного сопротивления и уменьшению амплитуды электромагнитных колебаний. Поэтому лучшим вариантом для изготовления первичной обмотки будет полая медная трубка, или плоская широкая лента. Над первичной обмоткой по внешнему диаметру иногда устанавливают незамкнутое защитное кольцо (Strike Ring) из того же проводника, и заземляют. Кольцо предназначено для предотвращения попадания разрядов в первичную обмотку. Разрыв необходим для исключения протекания тока по кольцу, иначе магнитное поле, созданное индукционным током, будет ослаблять магнитное поле первичной и вторичной обмотки. От защитного кольца можно отказаться, если заземлить один конец первичной обмотки, при этом попадание разряда не причинит вреда компонентам катушки.
Коэффициент связи между обмотками зависит от их взаимного расположения, чем они ближе, тем больше коэффициент. Для искровых катушек типичное значение коэффициента равно K=0,1-0,3. От него зависит напряжение на вторичной обмотке, чем больше коэффициент связи, тем больше напряжение. Но увеличивать коэффициент связи выше нормы не рекомендуется, так как между обмотками начнут проскакивать разряды, повреждающие вторичную обмотку.
На схеме представлен простейший вариант катушки Тесла типа ACSGTC.
Принцип действия катушки Тесла основан на явлении резонанса двух индуктивно связанных колебательных контуров. Первичный колебательный контур состоит из конденсатора С1, первичной обмотки L1, и коммутируется разрядником, в результате чего образуется замкнутый контур. Вторичный колебательный контур образован вторичной обмоткой L2 и конденсатором С2 (тор обладающий емкостью), нижний конец обмотки обязательно заземляется. При совпадении собственной частоты первичного колебательного контура с частотой вторичного колебательного контура, происходит резкое возрастание амплитуды напряжения и тока во вторичной цепи. При достаточно высоком напряжении происходит электрический пробой воздуха в виде разряда, исходящего из тора. При этом важно понимать, что представляет собой замкнутый вторичный контур. Ток вторичного контура течет по вторичной обмотке L2 и конденсатору С2 (тор), далее по воздуху и земле (так как обмотка заземлена), замкнутый контур можно описать следующим образом: земля-обмотка-тор-разряд-земля. Таким образом, захватывающие электрические разряды представляют собой часть контурного тока. При большом сопротивлении заземления разряды, исходящие из тора будут бить прямо по вторичной обмотке, что не есть хорошо, поэтому нужно делать качественное заземление.
После того как размеры вторичной обмотки и тора определены, можно посчитать собственную частоту колебаний вторичного контура. Здесь надо учитывать, что вторичная обмотка кроме индуктивности обладает некоторой емкостью из-за немалых размеров, которую надо учитывать при расчете, емкость обмотки необходимо сложить с емкостью тора. Далее надо прикинуть параметры катушки L1и конденсатора C1первичного контура, так чтобы собственная частота первичного контура была близка к частоте вторичного контура. Емкость конденсатора первичного контура обычно составляет 25-100 нФ, исходя из этого, рассчитывают количество витков первичной обмотки, в среднем должно получиться 5-20 витков. При изготовлении обмотки необходимо увеличить количество витков, по сравнению с расчетным значением, для последующей настройки катушки в резонанс. Рассчитать все эти параметры можно по стандартным формулам из учебника физики, также в сети есть книги по расчету индуктивности различных катушек. Существуют и специальные программы калькуляторы для расчета всех параметров будущей катушки Тесла.
Настройка осуществляется путем изменения индуктивности первичной обмотки, то есть один конец обмотки подсоединен к схеме, а другой никуда не подключается. Второй контакт выполняют в виде зажима, который можно перекидывать с одного витка на другой, тем самым используется не вся обмотка, а только ее часть, соответственно меняется индуктивность, и собственная частота первичного контура. Настройку выполняют во время предварительных запусков катушки, о резонансе судят по длине выдаваемых разрядов. Существует также метод холодной настройки резонанса при помощи ВЧ генератора и осциллографа или ВЧ вольтметра, при этом катушку запускать не надо. Необходимо взять на заметку, что электрический разряд обладает емкостью, вследствие чего собственная частота вторичного контура может немного уменьшаться во время работы катушки. Заземление также может оказывать небольшое влияние на частоту вторичного контура.
Разрядник является коммутирующим элементом в первичном колебательном контуре. При электрическом пробое разрядника под действием высокого напряжения, в нем образуется дуга, которая замыкает цепь первичного контура, и в нем возникают высокочастотные затухающие колебания, в течение которых напряжение на конденсаторе С1 постепенно уменьшается. После того как дуга гаснет, контурный конденсатор С1 вновь начинает заряжаться от источника питания, при следующем пробое разрядника начинается новый цикл колебаний.
Разрядник подразделяется на два типа: статический и вращающийся. Статический разрядник представляет собой два близко расположенных электрода, расстояние между которыми регулируют так чтобы электрический пробой между ними происходил в то время, когда конденсатор С1 заряжен до наибольшего напряжения, или немного меньше максимума. Ориентировочное расстояние между электродами определяют исходя из электрической прочности воздуха, которая составляет около 3 кВ/мм при стандартных условиях окружающей среды, а также зависит от формы электродов. Для переменного сетевого напряжения, частота срабатываний статического разрядника (BPS – beats per second) составит 100Гц.
Вращающийся разрядник (RSG – Rotary spark gap) выполняется на основе электродвигателя, на вал которого насажен диск с электродами, с каждой стороны диска устанавливаются статические электроды, таким образом, при вращении диска, между статическими электродами будут пролетать все электроды диска. Расстояние между электродами делают минимальным. В таком варианте можно регулировать частоту коммутаций в широких пределах управляя электродвигателем, что дает больше возможностей по настройке и управлению катушкой. Корпус двигателя необходимо заземлить, для защиты обмотки двигателя от пробоя, при попадании высоковольтного разряда.
В качестве контурного конденсатора С1 применяют конденсаторные сборки (MMC – Multi Mini Capacitor) из последовательно и параллельно соединенных высоковольтных высокочастотных конденсаторов. Обычно применяют керамические конденсаторы типа КВИ-3, а также пленочные К78-2. В последнее время намечен переход на бумажные конденсаторы типа К75-25, которые неплохо показали себя в работе. Номинальное напряжение конденсаторной сборки для надежности должно быть в 1,5-2 раза больше амплитудного напряжения источника питания. Для защиты конденсаторов от перенапряжения (высокочастотные импульсы) устанавливают воздушный разрядник параллельно всей сборке. Разрядник может представлять собой два небольших электрода.
В качестве источника питания для зарядки конденсаторов используется высоковольтный трансформатор Т1, или несколько последовательно или параллельно соединенных трансформаторов. В основном начинающие тесластроители используют трансформатор из микроволновой печи (MOT – Microwave Oven Transformer), выходное переменное напряжение которого составляет ~2,2 кВ, мощность около 800 Вт. В зависимости от номинального напряжения контурного конденсатора, МОТы соединяют последовательно от 2 до 4 штук. Применение только одного трансформатора не целесообразно, так как из-за небольшого выходного напряжения зазор в разряднике будет очень малым, итогом будут нестабильные результаты работы катушки. Моты имеют недостатки в виде слабой электропрочности, не рассчитаны для работы в длительном режиме, сильно греются при большой нагрузке, поэтому часто выходят из строя. Более разумно использовать специальные масляные трансформаторы типа ОМ, ОМП, ОМГ, которые имеют выходное напряжение 6,3 кВ, 10 кВ, и мощность 4 кВт, 10 кВт. Можно также изготовить самодельный высоковольтный трансформатор. При работе с высоковольтными трансформаторами не следует забывать о технике безопасности, высокое напряжение опасно для жизни, корпус трансформатора необходимо заземлить. При необходимости последовательно с первичной обмоткой трансформатора можно установить автотрансформатор, для регулировки напряжения зарядки контурного конденсатора. Мощность автотрансформатора должна быть не меньше мощности трансформатора T1.
Дроссель Lд в цепи питания необходим для ограничения тока короткого замыкания трансформатора при пробое разрядника. Чаще всего дроссель находится в цепи вторичной обмотки трансформатора T1. Вследствие высокого напряжения, необходимая индуктивность дросселя может принимать большие значения от единиц до десятков Генри. В таком варианте он должен обладать достаточной электропрочностью. С таким же успехом дроссель можно установить последовательно с первичной обмоткой трансформатора, соответственно здесь не требуется высокая электропрочность, необходимая индуктивность на порядок ниже, и составляет десятки, сотни миллигенри. Диаметр обмоточного провода должен быть не меньше диаметра провода первичной обмотки трансформатора. Индуктивность дросселя рассчитывают из формулы зависимости индуктивного сопротивления от частоты переменного тока.
Фильтр низких частот (ФНЧ) предназначен для исключения проникновения высокочастотных импульсов первичного контура в цепь дросселя и вторичной обмотки трансформатора, то есть для их защиты. Фильтр может быть Г-образным или П-образным. Частоту среза фильтра выбирают на порядок меньше резонансной частоты колебательных контуров катушки, но при этом частота среза должна быть намного больше частоты срабатывания разрядника.
При резонансном заряде контурного конденсатора (тип катушки – DCSGTC), используют постоянное напряжение, в отличии от ACSGTC. Напряжение вторичной обмотки трансформатора T1 выпрямляют с помощью диодного моста и сглаживают конденсатором Св. Емкость конденсатора должна быть на порядок больше емкости контурного конденсатора С1, для уменьшения пульсаций постоянного напряжения. Величина емкости обычно составляет 1-5 мкФ, номинальное напряжение для надежности выбирают в 1,5-2 раза больше амплитудного выпрямленного напряжения. Вместо одного конденсатора можно использовать конденсаторные сборки, желательно не забывая про выравнивающие резисторы при последовательном соединении нескольких конденсаторов.
В качестве диодов моста применяют последовательно соединенные высоковольтные диодные столбы типа КЦ201 и др. Номинальный ток диодных столбов должен быть больше номинального тока вторичной обмотки трансформатора. Обратное напряжение диодных столбов зависит от схемы выпрямления, по соображениям надежности обратное напряжение диодов должно быть в 2 раза больше амплитудного значения напряжения. Возможно изготовление самодельных диодных столбов путем последовательного соединения обычных выпрямительных диодов (например 1N5408, Uобр = 1000 В, Iном = 3 А), с применением выравнивающих резисторов.
Вместо стандартной схемы выпрямления и сглаживания можно собрать удвоитель напряжения из двух диодных столбов и двух конденсаторов.
Принцип работы схемы резонансного заряда основан на явлении самоиндукции дросселя Lд, а также применения диода отсечки VDо. В момент времени, когда конденсатор C1 разряжен, через дроссель начинает течь ток, возрастая по синусоидальному закону, при этом в дросселе накапливается энергия в виде магнитного поля, а конденсатор при этом заряжается, накапливая энергию в виде электрического поля. Напряжение на конденсаторе возрастает до напряжения источника питания, при этом через дроссель течет максимальный ток, и падение напряжения на нем равно нулю. При этом ток не может прекратиться мгновенно, и продолжает течь в том же направлении из-за наличия самоиндукции дросселя. Зарядка конденсатора продолжается до удвоенного значения напряжения источника питания. Диод отсечки необходим для предотвращения перетекания энергии от конденсатора обратно в источник питания, так как между конденсатором и источником питания появляется разность потенциалов равная напряжению источника питания. На самом деле напряжение на конденсаторе не достигает удвоенного значения, из-за наличия падения напряжения на диодном столбе.
Применение резонансного заряда позволяет более эффективно и равномерно передавать энергию на первичный контур, при этом для получения одинакового результата (по длине разряда), для DCSGTC требуется меньшая мощность источника питания (трансформатор Т1), чем для ACSGTC. Разряды приобретают характерный плавный изгиб, вследствие стабильного питающего напряжения, в отличии от ACSGTC, где очередное сближение электродов в RSG может приходиться по времени на любой участок синусоидального напряжения, включая попадание на нулевое или низкое напряжение и как следствие переменная длина разряда (рваный разряд).
Ниже на картинке представлены формулы для расчета параметров катушки Тесла:
Предлагаю ознакомиться с моим опытом постройки катушки Тесла своими руками.
Последние записи:
Катушка Тесла своими руками. Схема, принцип работы
Катушка Тесла представляет две катушки L1 и L2, которая посылает большой импульс тока в катушку L1. У катушек Тесла нет сердечника. На первичной обмотке наматывают более 10 витков. Вторичная обмотка тысячу витков. Еще добавляют конденсатор, чтобы минимизировать потери на искровой разряд.
Катушка Тесла выдает большой коэффициент трансформации. Он превышает отношение числа витков второй катушки к первой. Выходная разность потенциалов катушки Тесла бывает больше нескольких млн вольт. Это создает такие разряды электрического тока, что эффект получается зрелищным. Разряды бывают длины в несколько метров.
Принцип катушки Тесла
Чтобы понять, как работает катушка Тесла, нужно запомнить правило по электронике: лучше раз увидеть, чем сто услышать. Схема катушки Тесла простая. Это простейшее устройство катушки Тесла создает стримеры.
Из высоковольтного конца катушки Тесла вылетает стример фиолетового цвета. Вокруг нее есть странное поле, которое заставляет светиться люминесцентную лампу, которая не подключена и находится в этом поле.
Стример – это потери энергии в катушке Тесла. Никола Тесла старался избавляться от стримеров за счет того, чтобы подсоединить его к конденсатору. Без конденсатора стримера нет, а лампа горит ярче.
Катушку Тесла можно назвать игрушкой, кто показывает интересный эффект. Она поражает людей своими мощными искрами. Конструировать трансформатор – дело интересное. В одном устройстве совмещаются разные эффекты физики. Люди не понимают, как функционирует катушка.
Катушка Тесла имеет две обмотки. На первую подходит напряжение переменного тока, создающее поле потока. Энергия переходит во вторую катушку. Похожее действие у трансформатора.
Вторая катушка и Cs образуют дают колебания, суммирующие заряд. Некоторое время энергия держится в разности потенциалов. Чем больше вложим энергии, на выходе будет больше разности потенциалов.
Главные свойства катушки Тесла:
- Частота второго контура.
- Коэффициент обеих катушек.
- Добротность.
Коэффициент связи обуславливает быстроту передачи энергии из одной обмотки во вторичную. Добротность дает время сохранения энергии контуром.
Подобие с качелями
Для лучшего понимания накапливания, большой разности потенциалов контуром, представьте качели, раскачивающиеся оператором. Тот же контур колебания, а человек служит первичной катушкой. Ход качели – это электрический ток во второй обмотке, а подъем – разность потенциалов.
Оператор раскачивает, передает энергию. За несколько раз они сильно разогнались и поднимаются очень высоко, они сконцентрировали в себе много энергии. Такой же эффект происходит с катушкой Тесла, наступает переизбыток энергии, случается пробивание и виден красивый стример.
Раскачивать колебания качелей нужно в соответствии с тактом. Частота резонанса – число колебаний в сек.
Длину траектории качели обуславливает коэффициент связи. Если раскачивать качели, то они быстро раскачаются, отойдут ровно на длину руки человека. Этот коэффициент единица. В нашем случае катушка Тесла с повышенным коэффициентом – тот же трансформатор.
Человек толкает качели, но не держит, то коэффициент связи малый, качели отходят еще дальше. Раскачивать их дольше, но для этого не требуется сила. Коэффициент связи больше, чем быстрее в контуре накапливается энергия. Разность потенциалов на выходе меньше.
Добротность – противоположно трению на примере качелей. Когда трение большое, то добротность маленькая. Значит, добротность и коэффициент согласовываются для наибольшей высоты качели, или наибольшего стримера. В трансформаторе второй обмотки катушки Тесла добротность – значение переменное. Два значения сложно согласовать, его подбирают в результате опытов.
Главные катушки Тесла
Тесла изготовил катушку одного вида, с разрядником. База элементов намного улучшилась, возникло много видов катушек, по подобию их также называют катушками Тесла. Виды называют и по-английски, аббревиатурами. Их называют аббревиатурами по-русски, не переводя.
- Катушка Тесла, имеющая в составе разрядник. Это начальная обычная конструкция. С малой мощностью это два провода. С большой мощностью – разрядники с вращением, сложные. Эти трансформаторы хороши, если необходим мощный стример.
- Трансформатор на радиолампе. Он работает бесперебойно и дает утолщенные стримеры. Такие катушки применяют для Тесла высокой частоты, они по виду похожи на факелы.
- Катушка на полупроводниковых приборах. Это транзисторы. Трансформаторы действуют постоянно. Вид бывает различным. Этой катушкой легко управлять.
- Катушки резонанса в количестве двух штук. Ключами являются полупроводники. Эти катушки самые сложные для настройки. Длина стримеров меньше, чем с разрядником, они хуже управляются.
Чтобы иметь возможность управлять видом, создали прерыватель. Этим устройством тормозили, чтобы было время на заряд конденсаторов, снизить температуру терминала. Так увеличивали длину разрядов. В настоящее время имеются другие опции (играет музыка).
Главные элементы катушки Тесла
В разных конструкциях основные черты и детали общие.
- Тороид – имеет 3 опции.Первая – снижение резонанса.
Вторая – скапливание энергии разряда. Чем больше тороид, тем содержится больше энергии. Тороид выделяет энергию, повышает его. Это явление будет выгодным, если применять прерыватель.
Третья – создание поля со статическим электричеством, отталкивающим от второй обмотки катушки. Эта опция выполняется самой второй катушкой. Тороид ей помогает. Из-за отталкивания стримера полем, он не бьет по короткому пути на вторую обмотку. От применения тороида несут пользу катушки с накачкой импульсами, с прерывателями. Значение наружного диаметра тороида в два раза больше второй обмотки.
Тороиды можно изготовить из гофры и других материалов. - Вторичная катушка – базовая составляющая Тесла.
Длина в пять раз больше диаметра мотки.
Диаметр провода рассчитывают, на второй обмотке влезало 1000 витков, витки наматывают плотно.
Катушку покрывают лаком, чтобы защитить от повреждений. Можно покрывать тонким слоем.
Каркас делают из труб ПВХ для канализации, которые продаются в магазинах для строительства. - Кольцо защиты – служит для попадания стримера в первую обмотку, не повреждая. Кольцо ставится на катушку Тесла, стример по длине больше второй обмотки. Он похож на виток провода из меди, толще провода первой обмотки, заземляется кабелем к земле.
- Обмотка первичная – создается из медной трубки, использующейся в кондиционерах. Она имеет низкое сопротивление, чтобы большой ток шел по ней легко. Толщину трубы не рассчитывают, берут примерно 5-6 мм. Провод для первичной обмотки применяют с большим размером сечения.
Расстояние от вторичной обмотки выбирается из расчета наличия необходимого коэффициента связи.
Обмотка является подстраиваемой тогда, когда первый контур определен. Место, перемещая ее регулирует значение частоты первички.
Эти обмотки изготавливают в виде цилиндра, конуса.
- Заземление – это важная составляющая часть.
Стримеры бьют в заземление, замыкают ток.
Будет недостаточное заземление, то стримеры будут ударять в катушку.
Катушки подключены к питанию через землю.
Есть вариант подключения питания от другого трансформатора. Этот способ называется «магниферным».
Биполярные катушки Тесла производят разряд между концами вторичной обмотки. Это обуславливает замыкание тока без заземления.
Для трансформатора в качестве заземления применяют заземление большим предметом, проводящим электрический ток – это противовес. Таких конструкций немного, они опасны, так как имеет место высокая разность потенциалов между землей. Емкость от противовеса и окружающих вещей отрицательно влияет на них.
Это правило действует для вторичных обмоток, у которых длина больше диаметра в 5 раз, и мощностью до 20 кВА.
Катушка Тесла своими руками
Как изготовить что-то эффектное по изобретениям Тесла? Увидев его идеи и изобретения, будет сделана катушка Тесла своими руками.
Это трансформатор, создающий высокое напряжение. Вы можете трогать искру, зажигать лампочки.
Для изготовления нам нужен медный провод в эмали диаметром 0,15 мм. Подойдет любой от 0,1 до 0,3 мм. Вам нужно порядка двухсот метров. Его можно достать из различных приборов, допустим, из трансформаторов, либо купить на рынке, это будет лучше. Еще вам понадобится несколько каркасов. Во-первых, это каркас для вторичной обмотки. Идеальный вариант – это 5 метровая канализационная труба, но, подойдет что угодно диаметром от 4 до 7 см, длиной 15-30 см.
Для первичной катушки вам понадобится каркас на пару сантиметров больше первого. Также понадобится несколько радиодеталей. Это транзистор D13007, либо его аналоги, небольшая плата, несколько резисторов, 5, 75 килоом 0,25 Вт.
Проволоку мотаем на каркас около 1000 витков без перехлестов, без больших промежутков, аккуратно. Можно управиться за 2 часа. Когда намотка закончена, намазываем обмотку лаком в несколько слоев, либо другим материалом, чтобы она не пришла в негодность.
Намотаем первую катушку. Она мотается на каркасе больше и мотается проводом порядка 1 мм. Здесь подойдет провод, порядка 10 витков.
Если изготавливать трансформатор простого типа, то состав его – это две катушки без сердечника. На первой обмотке около десяти витков толстого провода, на второй – не менее тысячи витков. При изготовлении, катушка Тесла своими руками имеет коэффициент в десятки раз больше, чем число витков второй и первой обмоток.
Выходное напряжение трансформатора будет достигать миллионы вольт. Это дает красивое зрелище в несколько метров.
Сложно намотать катушку Тесла своими руками. Еще труднее создать облик катушке для привлечения зрителей.
Сначала необходимо определиться с питанием в несколько киловольт, закрепить к конденсатору. При лишней емкости изменяется значение параметров диодного моста. Далее, подбирается промежуток искры для создания эффекта.
- Два провода скрепляются, оголенные концы были повернуты в сторону.
- Выставляется зазор из расчета пробивания немного большем напряжении данной разности потенциалов. Для переменного тока разность потенциалов будет выше определенного.
- Подключается питание катушке Тесла своими руками.
- Наматывается вторичная обмотка 200 витков на трубу из изоляционного материала. Если все изготовлено по правилам, то разряд будет хороший, с ветвями.
- Заземление второй катушки.
Получается катушка Тесла своими руками, которую можно изготовить дома, владея элементарными познаниями в электричестве.
Безопасность
Вторичная обмотка находится под напряжением, способным убить человека. Ток пробивания достигает сотен ампер. Человек может выжить до 10 ампер, поэтому не нужно забывать о мерах защиты.
Расчет катушки Тесла
Без расчетов можно изготовить слишком большой трансформатор, но разряды искры сильно разогревают воздух, создают гром. Электрическое поле выводит из строя электрические приборы, поэтому трансформатор необходимо располагать подальше.
Для расчета длины дуги и мощности расстояние между проводами электродов в см делится на 4,25, далее производится в квадрат, получается мощность (Вт).
Для определения расстояния корень квадратный от мощности умножается на 4,25. Обмотка, создающая разряд дуги в 1,5 метра, должна получать мощность1246 ватт. Обмотка с питанием в 1 кВт создает искру в 1,37 м длины.
Бифилярная катушка Тесла
Такой метод намотки провода распределяет емкость больше, чем при стандартной намотке.
Такие катушки обуславливают приближения витков. Градиент конусообразный, а не плоский, в середине катушки, или с провалом.
Емкость тока не изменяется. Из-за сближения участков разность потенциалов между витков во время колебаний повышается. Следовательно, сопротивление емкости при большой частоте в несколько раз снижается, а емкость увеличивается.
Пишите комментарии, дополнения к статье, может я что-то пропустил. Загляните на карту сайта, буду рад если вы найдете на моем сайте еще что-нибудь полезное.
Поделиться ссылкой:
Принцип работы катушки Тесла
Одним из устройств, которые изобрел Никола Тесла, является катушка или резонансный трансформатор, способный выдавать высокое напряжение с высокой частотой. Для того, чтобы представлять работу этого устройства, необходимо знать принцип работы катушки Тесла.
Трансформатор Тесла: принцип действия
Принцип работы данного устройства сравним с действием обычных качелей. При режиме принудительного раскачивания, максимальная амплитуда находится в пропорции к прилагаемым усилиям. Если же раскачивание производится в свободном режиме, происходит еще больший рост максимальной амплитуды.
В катушке качелями является вторичный контур колебаний, а прилагаемое усилие осуществляет генератор. Они срабатывают в строго обозначенное время.
Конструкция катушки Тесла
В самом простом трансформаторе имеется две катушки – первичная и вторичная. Кроме того, в конструкцию входит разрядник, конденсатор и терминал. В конечном итоге образуются два контура колебаний, связанных между собой. Это является основным отличием катушки Тесла от обычного трансформатора.
Для того, чтобы катушка работала полноценно, оба контура колебания настраиваются на одинаковую частоту резонанса. Настройка производится путем подстройки первичного контура под вторичный, изменяя емкость конденсатора и количество витков. В результате, на выходе катушки образуется максимальное напряжение.
Для работы трансформатора Тесла используется импульсный режим. На первом этапе величина заряда конденсатора должна сравняться с напряжением, вызывающим пробой разрядника. На втором этапе колебания высокой частоты генерируются в первичном контуре. Параллельно включается разрядник, замыкающий трансформатор и убирающий его из общего контура. В противном случае, в первичном контуре могут произойти потери, которые могут повлиять на качество его работы. В нормальной схеме, разрядник, как правило, устанавливается параллельно с источником питания.
Таким образом, значение напряжения на выходе катушки Тесла может составлять несколько миллионов вольт. С помощью такого напряжения, в воздухе возникают разряды электричества, достигающие значительной длины. Их внешний вид буквально завораживает, и во многих случаях трансформатор применяется в качестве декоративного изделия.
Принцип действия катушки Тесла помогает найти практическое применение этому устройству. Как правило, ему отводится познавательная и эстетическая роль. Это связано с определенными трудностями в управлении прибором и передаче полученной энергии на расстояние.
Leave a Reply