Разное

Цветомузыка фото – Цветомузыкальные приставки (цветомузыка) купить в Москве. Цветомузыкальные приставки (цветомузыка) заказать по выгодной цене

ЦВЕТОМУЗЫКА ИЗ СВЕТОДИОДОВ

Всем привет. Может кому надо, выкладываю сборник различных LED цветомузык. Все схемы лично проверены так что можете смело приступать к самостоятельному изготовлению этих девайсов. Все ЦМУ с батареечным низковольтным питанием, сейчас многие из молодёжи ходят по улице с активными колонками, от флешки музыку слушают, для разнообразия можно и такую мигалку к ним приделать.

Сборник схем LED ЦМУ

Схема с питанием от 5В USB

Цветомузыка на диапазон питания 6-8 вольт

Цветомузыка на 9-12 вольт

Это график фильтров, что тут используются

Ещё один вариант схемы ЦМУ для диодных лент

Здесь нижний вариант выходной схемы, немного чувствительнее, можно его применить

Вот ещё два вида мигалок что я паял. Это двухканальная ЦМУ от микрофона

А это просто акустическая мигалка

Двух канальная ЦМУ с подачей сигнала через шнур

И ещё интересная схема, типа бегушка и может работать как бегущая мигалка под музыку

Забыл про канал фона, может нужен будет кому

В следующих сборниках будут схемы светодиодных индикаторов уровня и бегущих огней. Автор: senya70

   Форум по LED

   Обсудить статью ЦВЕТОМУЗЫКА ИЗ СВЕТОДИОДОВ


Светодиодная цветомузыка своими руками

Светодиодная цветомузыка
Порой так хочется создать у себя дома яркое световое шоу, позвать друзей, включить громче музыку и окунуться в атмосферу дискотеки. С музыкой и друзьями проблем обычно не возникает, а вот организовать цветомузыку бывает достаточно проблематично. Даже самые простые световые эффекты стоят, порой, приличных денег, к тому же продаются далеко не во всех магазинах. Как же быть, если желание насладиться мигающими в такт музыке огоньками не угасает? Выход есть – собрать цветомузыку самому.

Схема цветомузыки


Светодиодная цветомузыка
Схема проста как валенок, содержит всего три транзистора и горстку резисторов с конденсаторами. Она содержит в себе три фильтра для низких, средних и высоких частот, поэтому такую цветомузыку можно назвать трёхканальной. Красный светодиод загорается, когда в звуковом сигнале преобладают низкие частоты, синий светодиод реагирует на средние частоты, а зелёный – на высокие. Подстроечные резисторы R4 — R6 регулируют чувствительность каждого из каналов, с их помощью задаётся необходимая яркость свечения. Транзисторы VT1 – VT3 коммутируют светодиоды, здесь можно применить любые n-p-n транзисторы малой мощности, например, BC547, BC337, КТ3102. Вместо отдельных светодиодов для увеличения яркости можно использовать отрезки светодиодной ленты, в этом случае транзисторы стоит поставить большей мощности, например, BD139, 2N4923, КТ961. На вход схемы можно подавать звуковой сигнал, например, с плеера, телефона или компьютера. Однако, может оказаться так, что уровня звукового сигнала не хватит для открывания транзисторов этой схемы и светодиоды будут светится тускло. Чтобы этого не произошло, сигнал нужно усилить, например, с помощью простенького усилителя на одном транзисторе, схема которого показана ниже.

Схема усилителя


Светодиодная цветомузыка
Транзистор можно использовать любой маломощный, хорошо себя зарекомендовал в этой схеме отечественный КТ3102. С помощью подстроечного резистора R1 можно регулировать уровень сигнала, подаваемого на схему цветомузыки. Питается усилитель от тех же 9 – 12 вольт. На его вход можно подавать даже слабый сигнал с телефона, ведь он будет усилен до нужного уровня.
Светодиодная цветомузыка

Сборка простой цветомузыки


После разбора схем можно приступить непосредственно к сборке конструкции. Обе схемы можно собрать на одной плате, как я и сделал. Печатная плата имеет размеры 35х55 мм и выполняется методом ЛУТ. Несколько фотографий процесса:
Светодиодная цветомузыка

Светодиодная цветомузыка
Светодиодная цветомузыка
Скачать плату:

После того, как лишняя медь стравлена, отверстия просверлены, дорожки залужены можно начинать впаивать детали. Первыми впаиваются небольшие детали – резисторы, после них конденсаторы, транзисторы. В последнюю очередь на плату устанавливаются массивные подстроечные резисторы. Для подключения проводов питания и звукового сигнала можно использовать клеммники, тогда соединять провода будет куда удобнее. После того, как все детали запаяны обязательно нужно отмыть плату от флюса, прозвонить соседние дорожки на замыкание.
Светодиодная цветомузыка
Светодиодная цветомузыка

Первое включение и настройка


Подавать напряжение на плату стоит, включив в разрыв одного из проводов питания амперметр. При отсутствии сигнала на входе схема потребляет примерно 1-2 мА. Все подстроечные резисторы нужно повернуть в среднее положение, после этого можно подавать на вход схемы звуковой сигнал. Для этого стоит воспользоваться разветвителем, который включается в гнездо телефона или плеера. При этом сигнал одновременно будет поступать и на колонки, и на плату цветомузыки. С помощью R1 нужно добиться того, чтобы яркость свечения светодиодов была достаточной. Затем с помощью резисторов R4 — R6 регулируется каждый канал отдельно, чтобы яркость свечения всех светодиодов была одинаковой. После того, как схема настроена, вместо отдельных светодиодов можно подключать яркие светодиодные ленты, включить погромче музыку и наслаждаться проделанной работой. Удачной сборки!
Светодиодная цветомузыка
Светодиодная цветомузыка

Смотрите видео


Работа такой цветомузыки наглядно показана на видео:

Светомузыка или цветомузыка

Светомузыка (или иначе — цветомузыка) — вид искусства, основанный на способности человека ассоциировать звуковые ощущения со световыми восприятиями; такое явление в неврологии получило название синестезии.

Еще одно определения этого явления — цветной слух, хотя светомузыка не акцентируется только на цветосочетании.

Цветомузыка как искусство, представляет собой производную от музыки и является её неотъемлемой частью. Её назначение — раскрытие сущности музыки посредством зрительных восприятий. Основной целью светомузыки как искусства — это изучение способности человека испытывать ощущения, навязываемые световыми образами при сопровождении музыки. Также, на жаргоне «светомузыкой»/«цветомузыкой» называют электронное устройство для построения световых картин, формирования цветовых зрительных образов, сопоставленных с музыкальным сопровождением.

Любители музыки уже давно подметили, что музыкальные инструменты звучат намного громче и отчетливее в хорошо освещённом помещении, чем в затемнённом. Поэтому при исполнении серьёзной музыки свет в зале обычно не гасят. Впервые связь между слухом и зрением очень убедительно показал русский физик и физиолог академик П. П. Лазарев. Исследования цветомузыки направлены на поиск форм, принципов, алгоритмов, подходов, предназначенных для понимания принципа создания устройств, назначением которых являются: Светомузыкальные инструменты — предназначенные для светокомпозиторов и светомузыкантов для создания световых шоу, назначением которых является сопровождение музыкального произведения. Разработка теории восприятия цветомузыки — для понимания принципов построения автоматических светомузыкальных устройств позволяющих самостоятельно, в реальном времени, синтезировать световое шоу для сопровождения музыки.

Самые ранние теории светомузыки исходят из признания внечеловеческой заданности законов трансформации музыки в свет, понимаемой как некий физический процесс. В последующих концепциях начинает учитываться и человеческий фактор с обращением к физиологическим, психологическим, а затем уже и к эстетическим аспектам.


Цветомузыка как автоматические светомузыкальные устройства (АСМУ) — относится к декоративно-оформительскому искусству и предназначено для светового сопровождения музыкального произведения, она позволяет по-новому воспринимать музыку, и предназначена дополнить звуковое восприятие световыми эффектами. В АСМУ используются автоматические алгоритмы для преобразования музыки в световые эффекты.

Светомузыка как программируемые синхронные автоматы

(ПСА) — на настоящий момент, стала неотъемлемой составляющей во многих музыкальных проектах и шоу. В этих устройствах используется искусство и фантазию светорежисёра (светоинженера) запрограммировать последовательность управления световыми приборами для придания зрелищности музыкальному произведению. ПСА – допускается возможность непосредственной работы как светоинструмента.

Светомузыка как светомузыкальный инструмент (СМИ) — предназначен для непосредственного создания светового шоу светомузыкантом. Это направление на настоящий момент не получило широкого направления из-за отсутствия серьезных теоритических разработок в этом направлении.

Цветомузыка – это устройства (или светоинструменты), работающие по заданной программе и/или использующие определённые алгоритмы (возможен гибридный вариант) для синхронного сопровождения музыки. Все остальные световые устройства относятся к устройствам световых эффектов (светодинамические устройства (СДУ) — бегущие огни и пр.) — электронные устройства для реализации световых эффектов, не связанных (синхронных) напрямую с музыкальным сопровождением. Также, имеются, как минимум, ещё два вида визуализации музыки (звука) это: Индикаторы уровня звукового сигнала; Анализаторы спектра звукового сигнала.

Самые простые цветомузыкальные установки состоят из трёх каналов, имеют пассивные RC-фильтры (которые имеют крутизну спада порядка 6 дБ/Окт). Как правило, они не могут достаточно эффективно создавать цветовое сопровождение музыкальной фонограммы, поэтому такие ЦМ-устройства относятся к самым простым, не дают приятного цветового сопровождения и популярны лишь среди начинающих радиолюбителей. Единственное преимущество таких устройств — их дешевизна и простота в изготовлении и наладке. Более сложные устройства используют активные фильтры (в основном на операционных усилителях, крутизна спада АЧХ которых достигает 16-28 дБ/Окт) и становится возможным использовать логарифмический усилитель для сжатия динамического диапазона (компрессор аудиосигнала) входного сигнала. Такие ЦМУ также могут кроме амплитуды сигнала отслеживать при помощи триггеров и иных средств ритм и/или разницу между сигналами в разных каналах, и на основе этой информации управлять дополнительными лампами и механизмами, например, передвигать светофильтры в фонаре, переключать направление или скорость бегущих огней, менять резкость изменения яркости ламп и т. д. Самые сложные СДУ используют цифро

Как сделать цветомузыку на светодиодах своими руками.

Здравствуйте, уважаемые читатели сайта sesaga.ru. Практически у каждого начинающего радиолюбителя, да и не только, возникало желание собрать цветомузыкальную приставку или бегущий огонь, чтобы разнообразить прослушивание музыки в вечернее время или в праздничные дни. В этой статье речь пойдет о простой цветомузыкальной приставке, собранной на светодиодах, которую под силу собрать даже начинающему радиолюбителю.

Цветомузыкальная приставка на диодах

1. Принцип действия цветомузыкальных приставок.

Работа цветомузыкальных приставок (ЦМП, ЦМУ или СДУ) основана на частотном разделении спектра звукового сигнала с последующей передачей его по отдельным каналам низких, средних и высоких частот, где каждый из каналов управляет своим источником света, яркость которого определяется колебаниями звукового сигнала. Конечным результатом работы приставки является получение цветовой гаммы, соответствующей воспроизводимому музыкальному произведению.

Для получения полной гаммы цветов и максимального количества цветовых оттенков в цветомузыкальных приставках используются, как минимум, три цвета:

Общая схема цветомузыкальной приставки

Разделение частотного спектра звукового сигнала происходит с помощью LC- и RC-фильтров, где каждый фильтр настроен на свою сравнительно узкую полосу частот и пропускает через себя только колебания этого участка звукового диапазона:

1. Фильтр низких частот (ФНЧ) пропускает колебания частотой до 300 Гц и цвет его источника света выбирают красным;
2. Фильтр средних частот (ФСЧ) пропускает 250 – 2500 Гц и цвет его источника света выбирают зеленым или желтым;
3. Фильтр высших частот (ФВЧ) пропускает от 2500 Гц и выше, и цвет его источника света выбирают синим.

Структурная схема цветомузыки

Каких-либо принципиальных правил для выбора полосы пропускания или цвета свечения ламп не существует, поэтому каждый радиолюбитель может применять цвета исходя из особенностей своего восприятия цвета, а также по своему усмотрению изменять число каналов и ширину полосы частот.

2. Принципиальная схема цветомузыкальной приставки.

На рисунке ниже предоставлена схема простой четырехканальной цветомузыкальной приставки, собранной на светодиодах. Приставка состоит из усилителя входного сигнала, четырех каналов и блока питания, обеспечивающего питание приставки от сети переменного тока.

Принципиальная схема цветомузыки на светодиодах

Сигнал звуковой частоты подается на контакты ПК, ЛК и Общий разъема Х1, и через резисторы R1 и R2 попадает на переменный резистор R3, являющийся регулятором уровня входного сигнала. От среднего вывода переменного резистора R3 звуковой сигнал через конденсатор С1 и резистор R4 поступает на вход предварительного усилителя, собранного на транзисторах VT1 и VT2. Применение усилителя позволило использовать приставку практически с любым источником звукового сигнала.

С выхода усилителя звуковой сигнал подается на верхние выводы подстроечных резисторов R7,R10, R14, R18, являющиеся нагрузкой усилителя и выполняющие функцию регулировки (подстройки) входного сигнала отдельно по каждому каналу, а также устанавливают нужную яркость светодиодов канала. От средних выводов подстроечных резисторов звуковой сигнал поступает на входы четырех каналов, каждый из которых работает в своей полосе звукового диапазона. Схематично все каналы выполнены одинаково и различаются лишь RC-фильтрами.

На канал высших частот сигнал подается от среднего вывода резистора R7.
Полосовой фильтр канала образован конденсатором С2 и пропускает только спектр верхних частот звукового сигнала. Низкие и средние частоты через фильтр не проходят, так как сопротивление конденсатора для этих частот велико.

Отдельный канал цветомузыкальной приставки

Проходя конденсатор, сигнал верхних частот детектируется диодом VD1 и подается на базу транзистора VT3. Появляющееся на базе транзистора отрицательное напряжение открывает его, и группа синих светодиодов HL1HL6, включенных в его коллекторную цепь, зажигаются. И чем больше амплитуда входного сигнала, тем сильнее открывается транзистор, тем ярче горят светодиоды. Для ограничения максимального тока через светодиоды последовательно с ними включены резисторы R8 и R9. При отсутствии этих резисторов светодиоды могут выйти из строя.

На канал средних частот сигнал подается от среднего вывода резистора R10.
Полосовой фильтр канала образован контуром С3R11С4, который для низких и высших частот оказывает значительное сопротивление, поэтому на базу транзистора VT4 поступают лишь колебания средних частот. В коллекторную цепь транзистора включены светодиоды HL7HL12 зеленого цвета.

На канал низких частот сигнал подается со среднего вывода резистора R18.
Фильтр канала образован контуром С6R19С7, который ослабляет сигналы средних и высших частот и поэтому на базу транзистора VT6 поступают лишь колебания низких частот. Нагрузкой канала являются светодиоды HL19HL24 красного цвета.

Для разнообразия цветовой гаммы в цветомузыкальную приставку добавлен канал желтого цвета. Фильтр канала образован контуром R15C5 и работает в частотном диапазоне ближе к низким частотам. Входной сигнал на фильтр поступает с резистора R14.

Питается цветомузыкальная приставка постоянным напряжением . Блок питания приставки состоит из трансформатора Т1, диодного моста, выполненного на диодах VD5VD8, микросхемного стабилизатора напряжения DA1 типа КРЕН5, резистора R22 и двух оксидных конденсаторов С8 и С9.

Переменное напряжение, выпрямленное диодным мостом, сглаживается оксидным конденсатором С8 и поступает на стабилизатор напряжения КРЕН5. С вывода 3 микросхемы стабилизированное напряжение 9В подается в схему приставки.

Для получения выходного напряжения 9В между минусовой шиной блока питания и выводом 2 микросхемы включен резистор R22. Изменением величины сопротивления этого резистора добиваются нужного выходного напряжения на выводе 3 микросхемы.

3. Детали.

В приставке могут быть использованы любые постоянные резисторы мощностью 0,25 – 0,125 Вт. На рисунке ниже показаны номиналы резисторов, у которых для обозначения величины сопротивления используют цветные полоски:

Цветовая маркировка резисторов

Переменный резистор R3 и подстроечные резисторы R7, R10, R14, R18 любого типа, лишь бы подходили под размер печатной платы. В авторском варианте конструкции использовался отечественный переменный резистор типа СП3-4ВМ, подстроечные резисторы импортного производства.

Подстроечные резисторы

Подробнее о резисторах можно почитать здесь и здесь.

Постоянные конденсаторы могут быть любого типа, и рассчитаны на рабочее напряжение не ниже 16 В. При возникновении трудности с приобретением конденсатора С7 емкостью 0,3 мкФ его можно составить из двух соединенных параллельно емкостью 0,22 мкФ и 0,1 мкФ.

Оксидные конденсаторы С1 и С6 должны иметь рабочее напряжение не ниже 10 В, конденсатор С9 не ниже 16 В, а конденсатор С8 не ниже 25 В.

Конденсаторы постоянной емкости

Оксидные конденсаторы С1, С6, С8 и С9 имеют полярность, поэтому при монтаже на макетную или печатную плату это необходимо учитывать: у конденсаторов Советского производства на корпусе обозначают положительный вывод, у современных отечественных и импортных конденсаторов обозначают отрицательный вывод.

Оксидные конденсаторы

Диоды VD1 – VD4 любые из серии Д9. На корпусе диода со стороны анода наносится цветная полоска, определяющая букву диода.

Диод серии Д9

В качестве выпрямителя, собранного на диодах VD5 – VD8, используется готовый миниатюрный диодный мост, рассчитанный на напряжение 50В и ток не менее 200 mA.

Диодный мост

Если вместо готового моста использовать выпрямительные диоды, придется немного подкорректировать печатную плату, или диодный мост вообще вынести за пределы основной платы приставки и собрать на отдельной небольшой плате.

Для самостоятельной сборки моста диоды берутся с теми же параметрами, что и заводской мост. Также подойдут любые выпрямительные диоды из серии КД105, КД106, КД208, КД209, КД221, Д229, КД204, КД205, 1N4001 – 1N4007. Если использовать диоды из серии КД209 или 1N4001 – 1N4007, то мост можно собрать прямо со стороны печатного монтажа непосредственно на контактных площадках платы.

Светодиоды обычные с желтым, красным, синим и зеленым цветом свечения. В каждом канале используется по 6 штук:

Светодиоды

Транзисторы VT1 и VT2 из серии КТ361 с любым буквенным индексом.

Цоколевка транзисторов КТ361

Транзисторы VT3, VT4, VT5, VT6 из серии КТ502 с любым буквенным индексом.

Цоколевка транзисторов КТ502

Стабилизатор напряжения типа КРЕН5А с любым буквенным индексом (импортный аналог 7805). Если использовать девятивольтовые КРЕН8А или КРЕН8Г (импортный аналог 7809), то резистор R22 не ставится. Вместо резистора на плате устанавливается перемычка, которая соединит средний вывод микросхемы с минусовой шиной, или при изготовлении платы этот резистор вообще не предусматривается.

Цоколевка КРЕН5А

Для соединения приставки с источником звукового сигнала применен разъем типа «джек» на три контакта. Кабель взят от компьютерной мыши.

Разъем типа

Трансформатор питания – готовый или самодельный мощностью не менее 5 Вт с напряжением на вторичной обмотке 12 – 15 В при токе нагрузки 200 mA.

В дополнение к статье посмотрите первую часть видеоролика, где показывается начальный этап сборки цветомузыкальной приставки

На этом первая часть заканчивается.
Если Вы соблазнились сделать цветомузыку на светодиодах, тогда подбирайте детали и обязательно проверьте исправность диодов и транзисторов, например, мультиметром. А во второй части произведем окончательную сборку и настройку цветомузыкальной приставки.
Удачи!

Литература:
1. И. Андрианов «Приставки к радиоприемным устройствам».
2. Радио 1990 №8, Б. Сергеев «Простые цветомузыкальные приставки».
3. Руководство по эксплуатации радиоконструктора «Старт».

Светомузыка — Википедия

Светомузыка (также цветомузыка) — вид искусства, основанный на способности человека ассоциировать звуковые ощущения со световыми восприятиями; такое явление в неврологии получило название синестезия. Ещё одно определения этого явления — цветной слух, хотя светомузыка не акцентируется только на цветосочетании. Светомузыка как искусство, представляет собой производную от музыки и является её неотъемлемой частью. Её назначение — раскрытие сущности музыки посредством зрительных восприятий. Основной целью светомузыки как искусства — это изучение способности человека испытывать ощущения, навязываемые световыми образами при сопровождении музыки.

Также на жаргоне «светомузыкой»/«цветомузыкой» называют электронное устройство для построения световых картин, формирования цветовых зрительных образов, сопоставленных с музыкальным сопровождением.

Любители музыки уже давно подметили, что музыкальные инструменты звучат намного громче и отчетливее в хорошо освещённом помещении, чем в затемнённом. Поэтому при исполнении серьёзной музыки свет в зале обычно не гасят.

Впервые связь между слухом и зрением очень убедительно показал русский физик и физиолог академик П. П. Лазарев.[1]

Исследования светомузыки направлены на поиск форм, принципов, алгоритмов, подходов, предназначенных для понимания принципа создания устройств, назначением которых являются:

  • Светомузыкальные инструменты — предназначенные для светокомпозиторов и светомузыкантов для создания световых шоу, назначением которых является сопровождение музыкального произведения.
  • Разработка теории восприятия светомузыки — для понимания принципов построения автоматических светомузыкальных устройств позволяющих самостоятельно, в реальном времени, синтезировать световое шоу для сопровождения музыки.

См. также: Психология восприятия звука, Психология восприятия цвета, Цветной слух

Самые ранние теории светомузыки исходят из признания внечеловеческой заданности законов трансформации музыки в свет, понимаемой как некий физический процесс. В последующих концепциях начинает учитываться и человеческий фактор с обращением к физиологическим, психологическим, а затем уже и к эстетическим аспектам.

Первые известные теории (Л. Б. Кастель во Франции, также Дж. Арчимбольдо в Италии, А. Кирхер в Германии («Musurgia universalis», 1650 год)) основаны на стремлении достичь однозначности «перевода» музыки в свет на основе аналогии «спектр — октава», предложенной И. Ньютоном под воздействием космологии, концепции «музыки сфер» (Пифагор, И. Кеплер). Эти идеи были популярны в XVII—XIX вв. и культивировались в двух основных вариантах:

  • цветомузыка — сопровождение музыки последовательностью цветов, определяемых однозначным соотношением «звукоряд — цветоряд»;
  • музыка цвета — беззвучная смена цветов, замещающих тоны в музыке согласно той же аналогии;

У теории Кастеля были как сторонники, так и критики (такие как Д. Дидро, Ж. Д’Аламбер, Ж. Ж. Руссо, Вольтер, И. Гёте, Ж. Бюффон, Г. Гельмгольц), которые указывали на необоснованность прямого переноса законов музыки (слуха) в область зрения и что механистичность концепции являются внеэстетическими по содержанию и натурфилософскими по происхождению.

Уже первые световые органы (Б. Бишоп, А. Римингтон[2]), появившиеся после изобретения электрических источников света, воочию убедили в том, что критики Кастеля правы. Но отсутствие широкой практики светомузыкального синтеза способствовало повторным опытам установления аналогии «звукоряд — цветоряд» (Ф. И. Юрьев; Д. Келлог в США, К. Лёф в Германии).

Современный вариант кастелианства представляют собой попытки некоторых учёных и инженеров добиться «перевода» музыки в свет с помощью средств автоматики и кибернетики на основе пусть и более сложных, но также однозначных алгоритмов (например, эксперименты К. Л. Леонтьева и лаборатории цветомузыки Ленинградского НИИ им. А. Попова, 60-е годы).

В XX веке появились первые светомузыкальные композиции, создание которых отвечало реальным эстетическим потребностям. Прежде всего это замысел «световой симфонии» в «Прометее» А. Н. Скрябина (1910), в партитуре которого впервые в мировой музыкальной практике самим композитором введена специальная строка «Luce» (свет), записанная обычными нотами для инструмента «tastiera per luce» («световой клавир»). Указания о том, какие цвета соответствуют нотным знакам, в «Luce» отсутствуют. Несмотря на различные оценки этого опыта, с 1915 года «Прометей» неоднократно исполнялся со световым сопровождением.

Проводившиеся тогда же опыты с динамической светоживописью (Г. И. Гидони, В. Д. Баранов-Россине («оптофон», тип «цветового» фортепиано, 1923-1924 гг.), З. Пешанек, Ф. Малина, С. М. Зорин), абсолютным кино (Г. Рихтер, О. Фишингер, Н. Макларен), инструментальной хореографией (Ф. Бёме, О. Пине, Н. Шеффер) заставили обратить внимание на специфические особенности использования визуального материала в светомузыке, материала непривычного и зачастую просто недоступного для практического освоения музыкантами (главным образом при усложнении пространственной организации света). Так, например, в первом выпуске альманахе «Синий всадник» (1912) была помещена сценическая композиция В. В. Кандинского «Желтый звук» на музыку Ф. А. Гартмана, готовилась и её постановка, призванная синтезировать в органическом единстве цвет, свет, движение и музыку (не состоялась из-за начавшейся 1-й мировой войны). Знаменитый режиссёр С. Эйзенштейн поставил в 1940 году оперы Вагнера со светомузыкой.

В 1970-е годы, с развитием электроники и удешевлением её элементной базы, широкому внедрению в концертную деятельность профессионального светового оборудования (что особенно можно проследить на примере поп- и рок-концертов), интерес к светомузыкальной технике возродился на «низовом» уровне. Возможность за приемлемую цену получить «домашнюю» светомузыку привело в 1970-х годах к всплеску популярности бытовых автоматических СДУ на 3-6 каналов (как для квартиры, так и дискотеки). Хотя большинство таких установок и было примитивными, сам факт явления представляет определённый интерес. К концу 80-х волна интереса к этому спала, в течение последующих десятилетий оставаясь на довольно низком уровне.

Тогда же, в 1970-х гг. проводятся исследования воздействия цветомузыки на космонавтов в условиях длительного космического полёта. В частности, Киевской киностудией имени А. Довженко и Институтом медико-биологических проблем создаётся прибор цветовариатор, с экрана которого записываются цветомузыкальные фильмы для просмотра космонавтами[3][4].

В 1980-е годы на сцене появляются целые школы цветомузыки в России и за рубежом. Многие эксперименты со светомузыкой были сделаны в электронной студии француза П. Булеза (одно из своих сочинений этот автор представил очень оригинальным способом: звук передавался в зал по расставленным вокруг зрительного зала динамикам, а также световым установкам; при этом создавался поразительный синтез пространственно-световых ощущений).
В 1990-е годы, например, особенно выделяется грандиозный опыт цветомузыкального представления Жан-Мишеля Жарра в Москве. Он расположил на здании Университета колоссальные светомузыкальные установки и произвел с их помощью потрясающие эффекты.

Светомузыка как устройство визуализации музыки[править | править код]

Светомузыка как автоматические светомузыкальные устройства (АСМУ) — относится к декоративно-оформительскому искусству и предназначено для светового сопровождения музыкального произведения, она позволяет по-новому воспринимать музыку, и предназначена дополнить звуковое восприятие световыми эффектами. В АСМУ используются автоматические алгоритмы для преобразования музыки в световые эффекты.

Светомузыка как программируемые синхронные автоматы (ПСА) — на настоящий момент, стала неотъемлемой составляющей во многих музыкальных проектах и шоу. В этих устройствах используется искусство и фантазию светорежисёра (светоинженера) запрограммировать последовательность управления световыми приборами для придания зрелищности музыкальному произведению. ПСА — допускается возможность непосредственной работы как светоинструмента.

Светомузыка как светомузыкальный инструмент (СМИ) — предназначен для непосредственного создания светового шоу светомузыкантом. Это направление на настоящий момент не получило широкого направления из-за отсутствия серьезных теоретических разработок в этом направлении.

Устройства световых эффектов[править | править код]

Светопроекторная установка на Дворцовой площади… … и вот какое световое шоу она создаёт

Светомузыки без музыки не существует. Светомузыка — это устройства (или светоинструменты), работающие по заданной программе и/или использующие определённые алгоритмы (возможен гибридный вариант) для синхронного сопровождения музыки. Все остальные световые устройства относятся к устройствам световых эффектов (светодинамические устройства (СДУ) — бегущие огни и пр.) — электронные устройства для реализации световых эффектов, не связанных (синхронных) напрямую с музыкальным сопровождением.

Также имеются, как минимум, ещё два вида визуализации музыки (звука) это:

Автоматические[править | править код]

Как правило, автоматические СДУ/ЦМУ основана на принципе фильтрации диапазона частот музыкальной фонограммы по отдельным частотным каналам (НЧ, НЧ-СЧ, СЧ, СЧ-ВЧ), которые, после усиления, подаются на устройства отображения (излучатели) разных цветов, сопоставленные с частотными каналами звука.

ЦМУ обычно состоит из:

Устройством отображения может быть как набор отдельных излучателей (световые прожекторы), так и цельная конструкция (экран) в которой и формируется световая картина.

Соответствие цвета звуку строится по такому традиционному принципу — частотный диапазон звука разделялся по частотному принципу на три-четыре канала:
красные лампы — низкие частоты (диапазон до 200 Гц),
жёлтые — средне-низкие (диапазон от 200 до 800 Гц),
зелёные — средние (от 800 до 3500 Гц),
синие — выше 3500 Гц
(соответствие не обязательное, просто традиционно сложившееся — линейное сопоставление частот АЧХ с порядком следования цветов в видимом спектре).

В связи с тем, что динамический диапазон музыки составляет 40-80 дБ, а динамический диапазон бытовых и автомобильных ламп накаливания, до настоящего времени применяемых в подавляющем большинстве ЦМУ, не превышает 10-15 дб (однако, на светодиодах легко достижим динамический диапазон в 60 Дб и более; на лампах накаливания тоже можно получить достаточно широкий динамический диапазон, изменяя не только яркость, но и количество зажигающихся ламп), как и с учётом комфортно воспринимаемых зрением перепадов яркости[уточнить], возникает проблема по согласованию этих диапазонов. Эта проблема решается при помощи компрессора аудиосигнала (при аналоговой обработке, при цифровой — иными методами). Без этого пользование устройством становится неудобным и некомфортным для зрения — требуется постоянная подстройка уровней усиления регуляторами яркости (только вы настроили «мигание» ламп под определённую мелодию, как сменяется громкость, и одни каналы горят постоянно, другие вообще не горят — необходима подстройка). Также надо отметить и т. н. «эффект утомляемости» многих устройств — ведь алгоритм работы ЦМУ достаточно прост, и если вначале новые эффекты радуют, то со временем становятся повторяющимися, унылыми и однообразными, особенно при неудачной конструкции фонарей.

Самые простые цветомузыкальные установки состоят из трёх каналов, имеют пассивные RC-фильтры (которые имеют крутизну спада порядка 6 дБ/Окт). Как правило, они не могут достаточно эффективно создавать цветовое сопровождение музыкальной фонограммы, поэтому такие ЦМ-устройства относятся к самым простым, не дают приятного цветового сопровождения и популярны лишь среди начинающих радиолюбителей. Единственное преимущество таких устройств — их дешевизна и простота в изготовлении и наладке.

Более сложные устройства используют активные фильтры (в основном на операционных усилителях, крутизна спада АЧХ которых достигает 16-28 дБ/Окт) и становится возможным использовать логарифмический усилитель для сжатия динамического диапазона (компрессор аудиосигнала) входного сигнала. Такие ЦМУ также могут кроме амплитуды сигнала отслеживать при помощи триггеров и иных средств ритм и/или разницу между сигналами в разных каналах, и на основе этой информации управлять дополнительными лампами и механизмами, например, передвигать светофильтры в фонаре, переключать направление или скорость бегущих огней, менять резкость изменения яркости ламп и т. д.

Самые сложные СДУ используют цифровые сигнальные процессоры (DSP), в которых вся обработка сигнала происходит в математическом виде, где применяются самые современные алгоритмы обработки сигналов, такие как быстрое преобразование Фурье (БПФ) и даже вейвлет-анализ.

Канал фона[править | править код]

Канал фона — дополнительный канал в автоматической цветомузыкальной установке, автоматически активизирующийся при пропадании входного аудиосигнала (в частности, в паузах между музыкальными композициями) и, соответственно, — света, во всех трёх основных цветовых каналах — красного, зелёного и синего. Для канала фона, в зависимости от предпочтений конструктора ЦМУ, традиционно выбирается фиолетовый либо жёлтый цвет. Канал фона предусмотрен не во всех цветомузыкальных установках.

Наличие канала фона полезно в ситуации, когда в помещении, где расположена ЦМУ, отсутствуют либо отключены все остальные источники света. В этом случае при пропадании входного сигнала на входе ЦМУ, не имеющей канала фона, помещение погружается в темноту. Если же установка содержит канал фона, при отсутствии сигнала на её входе помещение освещается излучателями этого канала. Регулировка номинальной яркости этого канала обычно доступна пользователю.

  1. ↑ Твоя цветомузыка. Не верь ушам? Архивная копия от 6 ноября 2011 на Wayback Machine — gramplastinki.com /Советская пресса о грампластинках/
  2. ↑ По образованию живописец, англичанин Александр Римингтон решил связать живопись и звук и произвел специализированное приспособление для излучения световых лучей — световую цимбалу. Достроил его он в 1883 году, а через два года провел дебютный концерт цветомузыки. Орган являл собой колоссальное строение, имеющее в своём составе клавиши для управления цветом и панель с разноцветными лампами, зажигающимися от нажатия клавиш. Исполнение и проигрывание на световой клавиатуре были похожими на проигрывание на фортепиано. Разноспектровый свет направлялся на экран, в качестве которого использовались большой лист, ткани, вуаль. Художник рассуждал: спектр может быть разделён на пять октав по светлости, что и стало главным принципом в конструкции световой клавиатуры. Совмещение оттенков на экране Римингтон получал с помощью нескольких основных цветов: красного, зелёного и синего. Изобретатель старался вставлять в светокомпозицию формы, для этого устанавливал на пути цветного луча обтюраторы клише.
  3. Гуровский Н.Н., Космолинский Ф.П., Мельников Л.Н. Космические путешествия. — М.: Знание, 1989. — С. 180-182. — (Народный университет. Естественнонаучный факультет).
  4. Мельников Л.Н. Некоторые вопросы обитаемости пилотируемых космических аппаратов // Техника — молодёжи. — 2004. — № 10. — С. 8-11.

Leave a Reply